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SM1. Proof of Lemma 2.1 . In order to prove Lemma 2.1, we first prove the5

following result.6

Lemma SM1.1. Suppose f ∈ C2(Rd), and αI ⪯ ∇2f ⪯ LI with L ≥ α > 0. Then7

∇f : Rd → Rd is invertible, if we denote (∇f)−1 as the inverse function of ∇f , we8

have (∇f)−1 ∈ C1(Rd;Rd), and ∇((∇f)−1) = (∇2f ◦ ∇f−1)−1.9

Proof. We first prove that ∇f is invertible. For arbitrary p ∈ Rd, consider g(x) =10

−p·x+f(x), then g is α−strongly convex. There exists unique x′ ∈ Rd s.t. ∇g(x′) = 0,11

i.e., ∇f(x′) = p; furthermore, for any x′′ such that ∇f(x′′) = p we have ∇g(x′′) = 0,12

the uniqueness yields x′′ = x′. This proves that ∇f is a bijective map on Rd. We13

denote (∇f)−1 as the inverse map of ∇f . To show the continuity of (∇f)−1, for any14

ϵ > 0, choose δ < αϵ. For fixed p ∈ Rd, consider any q with ∥q − p∥ < δ, denote15

x = ∇f−1(p), y = ∇f−1(q), from α−strongly convexity, we have ∥∇f(y)−∇f(x)∥ ≥16

α∥y − x∥, this yields ∥∇f−1(q)−∇f−1(p)∥ ≤ ∥q−p∥
α < ϵ. This verifies the continuity17

of ∇f−1.18

We then show (∇f)−1 is differentiable. Since f ∈ C2, ∇f ∈ C1. So ∇f is19

differentiable, which indicates that for any x, y ∈ Rd,20

∇f(y)−∇f(x) = ∇2f(x)(y − x) + r(x, y),21

where r : Rd × Rd → Rd is certain vector function satisfying limy→x
∥r(x,y)∥
∥y−x∥ = 0.22

Denote p = ∇f(x), q = ∇f(y), the above equation yields,23

q − p = ∇2f(x)(∇f−1(q)−∇f−1(p)) + r(x, y).24

This is25

(SM1.1) ∇f−1(q)−∇f−1(p) = (∇2f(x))−1(q − p)− (∇2f(x))−1r(x, y).26

Denote r̂(q, p) = −(∇2f(x))−1r(x, y), we have27

∥r̂(q, p)∥ ≤ ∥∇2f(x))−1∥ · ∥r(x, y)∥
∥y − x∥

· ∥y − x∥
∥q − p∥

· ∥q − p∥.28

Since ∥∇2f(x)−1∥ ≤ 1
α , and

∥y−x∥
∥q−p∥ = ∥y−x∥

∥∇f(y)−∇f(x)∥ ≤ 1
L . This yields29

∥r̂(q, p)∥ ≤ 1

αL

∥r(x, y)∥
∥y − x∥

· ∥q − p∥.30
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Now send q → p, due to the continuity of∇f−1, we know y → x. The above inequality31

yields r(q, p) = o(∥q − p∥), which verifies the differentiability of ∇f−1. Furthermore,32

by (SM1.1), we know the Jacobian of ∇f−1 is ∇(∇f−1)(p) = (∇2f(∇f−1(p)))−1,33

which is continuous. This verifies ∇f−1 ∈ C1.34

Proof of Lemma 2.1. By Lemma SM1.1, we know ∇f is bijective, and we denote35

∇f−1 ∈ C1 as its inverse. According to the definition of Legendre transformation,36

f∗(p) = sup
ξ∈Rd

{ξ · p− f(ξ)},37

since ξ · p − f(ξ) is α−strongly concave as a function of ξ, for any p ∈ Rd, there38

is a unique maximizer ξ∗, which solves ∇f(ξ∗) = p, i.e., ξ∗ = (∇f)−1(p). Thus39

f∗(p) = (∇f)−1(p) · p − f((∇f)−1(p)), since ∇f−1 ∈ C1, f∗ is at least C1, use40

∇(∇f−1(p)) = (∇2f(∇f−1(p)))−1, we have41

∇f∗(p) = ∇((∇f)−1(p))p+∇f−1(p)− f(∇f−1(p)) = ∇f−1(p).42

Since ∇f−1 ∈ C1, we know ∇f∗ ∈ C1, this leads to f∗ ∈ C2.43

Furthermore, we have ∇2f∗(p) = ∇(∇f−1(p)) = [∇2f(∇f−1(p))]−1, this yields44
1
LI ⪯ ∇2f∗ ⪯ 1

αI.45

On the other hand, recall that ξ∗ = ∇f−1(p) = ∇f∗(p), we have f∗(p) = ∇f∗(p) ·46

p− f(∇f∗(p)). Thus,47

f(q) + f∗(p)− q · p = f(q) +∇f∗(p) · p− f(∇f∗(p))− q · p48

= f(q)− f(∇f∗(p))− p · (q −∇f∗(p))49

= f(q)− f(∇f∗(p))−∇f(∇f∗(p)) · (q −∇f∗(p))50

= Df (q : ∇f∗(p)).51

For the third equality, we use the fact that ∇f∗(p) = (∇f)−1(p) for any p ∈ Rd.52

To prove the fact that f(q) + f∗(p) − q · p = Df∗(p : ∇f(q)), one only needs to53

treat g = f∗ ∈ C2(Rd) with 1
LI ⪯ ∇2g ⪯ 1

αI, and g
∗ = f∗∗ = f ,∗ and then apply the54

above argument to g.55

SM2. Proof of Theorem 2.1.56

Proof of Theorem 2.1. Given the Lipschitz condition on the vector field ( ∂
∂xH

⊤,57
∂
∂pH

⊤)⊤, it is known that the underlying Hamiltonian system considered admits58

a unique solution with continuous trajectories for arbitrary initial condition (X0,59

∇g(X0)).60

Let us recall the probability space (Ω,F ,P) used to describe the randomness of61

the Hamiltonian system. Since62

Eω

[∫ T

0

DH,x(∇ψ̂(Xt(ω), t) : P t(ω)) dt

]
= 0,63

then by the fact that Bregman divergence DH,x is always non-negative, we obtain64 ∫ T

0

DH,x(∇ψ̂(Xt(ω), t) : P t(ω)) dt = 0, P-almost surely.65

∗This is true for any f ∈ C(Rd) that is convex, c.f. Chapter 11 of [SM1].
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Thus, there exists a measurable subset Ω′ ⊂ Ω with P(Ω′) = 1 such that66 ∫ T

0

DH,x(∇ψ̂(Xt(ω
′), t) : P t(ω

′)) dt = 0, ∀ ω′ ∈ Ω′.67

By using the continuity and non-negativity of DH,x(∇ψ̂(Xt(ω
′), t) : P t(ω

′)) with68

respect to t, we have69

(SM2.1) ∇ψ̂(Xt(ω
′), t) = P t(ω

′) for 0 ≤ t ≤ T.70

When t = 0, we have ∇ψ̂(X0(ω
′), 0) = P 0(ω

′). Recall the initial condition of the71

Hamiltonian System, we have P 0(ω
′) = ∇g(X0(ω

′)). This yields ∇ψ̂(X0(ω
′), 0) =72

∇g(X0(ω
′)) for any ω′ ∈ Ω′, which yields73

(SM2.2) ∇ψ̂(x, 0) = ∇g(x) for all x ∈ Spt(ρ0).74

On the other hand, for t ∈ (0, T ], by differentiating on both sides of (SM2.1) w.r.t. t,75

we obtain76

(SM2.3)
∂

∂t
∇ψ̂(Xt(ω

′), t) +∇2ψ̂(Xt(ω
′), t)Ẋt(ω

′) = Ṗ t(ω
′).77

Recall that we have78

Ẋt =
∂

∂p
H(Xt,P t) =

∂

∂p
H(Xt,∇ψ̂(Xt, t)),79

Ṗ t = − ∂

∂x
H(Xt,P t) = − ∂

∂x
H(Xt,∇ψ̂(Xt, t)).80

Plugging these into (SM2.3) yields81

∂

∂t
∇ψ̂(Xt(ω

′), t) +∇2ψ̂(Xt(ω
′), t)

∂

∂p
H(Xt(ω

′),∇ψ̂(Xt(ω
′), t))82

= − ∂

∂x
H(Xt(ω

′),∇ψ̂(Xt(ω
′), t)),83

which leads to84

∇
(
∂

∂t
ψ̂(Xt(ω

′), t) +H(x,∇ψ̂(Xt(ω
′), t))

)
= 0, ∀ ω′ ∈ Ω′.85

Since the probability density distribution of Xt is ρt, we have proved that86

(SM2.4) ∇
(
∂

∂t
ψ̂(x, t) +H(x,∇ψ̂(x, t))

)
= 0, ∀ x ∈ Spt(ρt).87

Combining (SM2.2) and (SM2.4) proves this theorem.88

On the other hand, if L
|·|2
ρ0,g,T

(ψ̂) = 0. By using the fact that |∇ψ̂(Xt(ω), t) −89

P t(ω)|2 is continuous and non-negative for a.s. ω ∈ Ω, we can repeat the previous90

proof to show the same assertion still holds.91
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SM3. Proof of Lemma 2.2.92

Proof of Lemma 2.2. Let us first consider the term93

(SM3.1)

∫
Rd

ψ(x, t)ρt(x)dx = EXt
ψ(Xt, t).94

By differentiating (SM3.1) w.r.t. time t, we obtain95

d

dt

(∫
Rd

ψ(x, t)ρt(x)dx

)
= E

[
∇ψ(Xt, t) · Ẋt +

∂ψ(Xt, t)

∂t

]
.96

The right-hand side of the above equation equals97

EXt,P t
∇ψ(Xt, t) ·

∂

∂p
H(Xt,P t) + EXt

[
∂ψ(Xt, t)

∂t

]
98

=

∫
R2d

∇ψ(x, t) · ∂
∂p
H(x, p) dµt(x, p) +

∫
Rd

∂ψ(x, t)

∂t
ρt(x)dx.99

Combining the above equations, we have100

(SM3.2)∫
Rd

−∂tψ(x, t)dρt(x) =
∫
R2d

∇ψ(x, t) · ∂
∂p
H(x, p) dµt(x, p)−

d

dt

(∫
R2d

ψ(x, t)ρt(x)dx

)
.101

Plugging (SM3.2) into the formula of Lρ0,g,T (ψ) yields that102

Lρ0,g,T (ψ)103

=

∫ T

0

(∫
R2d

∇ψ(x, t) · ∂
∂p
H(x, p) dµt(x, p)−

d

dt

(∫
R2d

ψ(x, t)ρt(x)dx

))
dt104

+

∫ T

0

∫
Rd

−H(x,∇ψ(x, t))ρt(x) dx dt105

+

∫
Rd

ψ(x, T )ρt(x) dx−
∫
Rd

ψ(x, 0)ρ0(x) dx.106

=

∫ T

0

∫
R2d

(∇ψ(x, t) · ∂
∂p
H(x, p)−H(x,∇ψ(x, t))) dµt(x, p)dt107

=

∫ T

0

∫
R2d

(∇ψ(x, t) · ∂
∂p
H(x, p)−H(x,∇ψ(x, t))−H∗(x,

∂

∂p
H(x, p))) dµt(x, p)dt108

+

∫ T

0

∫
R2d

H∗(x,
∂

∂p
H(x, p)) dµt(x, p)dt.(SM3.3)109

The second equality is obtained by integrating the time-derivative of (SM3.1) on [0, T ]110

as well as by using the fact that ρt(·) is the density of X−marginal of µt.111

Based on Lemma 2.1, choosing f as H∗ and f∗ as the Hamiltonian H, and letting112

q = ∂
∂pH(x, p) and p = ∇ψ(x, t), we obtain113

H∗(x,
∂

∂p
H(x, p)) +H(x,∇ψ(x, t))−∇ψ(x, t) · ∂

∂p
H(x, p)114

= DH,x(∇ψ(x, t) : ∇vH
∗(x,

∂

∂p
H(x, p))).115

Since ∂
∂vH

∗(x, ·) = ( ∂
∂pH(x, ·))−1, the right-hand side of the above equality leads to116

DH,x(∇ψ(x, t) : p). Plugging this back to (SM3.3) proves Lemma 2.2.117
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SM4. Discussion on the dependence on ρ0. We give a brief discussion about118

the dependence on ρ0 for the computed solution ψθ via an example with the classical119

Hamiltonian H(x, p) = 1
2 |p|

2 + V (x). Assume that the solution ψθ exists for any120

initial density and is regular enough in time and space. For simplicity, we ignore the121

numerical error caused by symplectic integrator and consider the difference between122

ψθ,ρ0,1
and ψθ,ρ0,2

with different initial densities ρ0,1 and ρ0,2..123

Then by remark 2.1, one can verify for any test function f ∈ C1([0, T ]× Rd)124 ∫ T

0

∫
Rd

(
∇ψθ,ρ0,i

(x, t)− p̄i(x, t)
)
∇f(x, t)ρi(x, t)dxdt = 0.(SM4.1)125

Here i ≤ 2, ρi(x, t) is the marginal density of the position of the particleXi
t with differ-126

ent initial data x
(i)
0 , and p̄i(x, t) =

∫
Rd pdµ

(i)
t (p|x) with µ(i)

t (p|x) being the conditional127

distribution of the joint distribution µ
(i)
t (x, p).128

In particular, when the characteristic lines do not intersect, by (SM4.1) one129

can infer that ∇ψθ,ρ0,1
(x, t) = ∇ψθ,ρ0,2

(x, t) in the intersection of the supports of130

ρ0,1(t, ·) and ρ0,2(t, ·). Moreover, in this case p̄i(x, t) = P i
t with the initial value131

(X
(i)
t )−1(x),∇g

(
(X

(i)
t )−1(x)

)
as the initial value of the underlying Hamiltonian ODE.132

Since characteristic lines do not intersect, it is not hard to see that133

|p̄i(x, t)| ≤ C sup
x∈supp(ρ0,i)

|∇g(x)|, i ≤ 2,(SM4.2)134

p̄1(x, t) = p̄2(x, t), for any fixed (x, t).135

By subtracting (SM4.1) for i = 1, 2, one further has that136 ∫ T

0

∫
Rd

(
∇ψθ,ρ0,1

(x, t)−∇ψθ,ρ0,2
(x, t)

)
∇f(x, t)ρ1(x, t)dxdt(SM4.3)137

+

∫ T

0

∫
Rd

∇ψθ,ρ0,2
(x, t)∇f(x, t)(ρ2(x, t)− ρ1(x, t))dxdt138

−
∫ T

0

∫
Rd

(
p̄1(x, t)− p̄2(x, t)

)
∇f(x, t)ρ1(x, t)dxdt139

−
∫ T

0

∫
Rd

p̄2(x, t)∇f(x, t)(ρ1(x, t)− ρ2(x, t))dxdt = 0.140

Taking f = ψθ,ρ0,1
(x, t) − ψθ,ρ0,2

(x, t) and using Young’s inequality, by the sym-141

metry of ρ0,i and (SM4.2), one can obtain142

sup
i≤2

∫ T

0

∫
Rd

|∇ψθ,ρ0,1(x, t)−∇ψθ,ρ0,2(x, t)|2ρi(x, t)dxdt143

≤ C

∫ T

0

∫
Rd

(
1 + |∇ψθ,ρ0,1

(x, t)|2 + |∇ψθ,ρ0,1
(x, t)|2

)
|ρ1(x, t)− ρ2(x, t)|dxdt144

+ C

∫ T

0

∫
Rd

(
1 + |p̄1(x, t)|2 + p̄2(x, t)|2

)
|ρ1(x, t)− ρ2(x, t)|dxdt.145

This, together with the fact that ρi(t, ·) is continuous w.r.t. the initial density, implies146

that the approximate solution ψθ is continuous w.r.t. the initial density.147

After the characteristic lines intersect, the analysis is more complicate and relies148

on the properties of conditional distribution µ
(i)
t (p|x) and the averaged momentum149

p̄i(t, x). It is beyond the scope of this current work. We hope to address and study150

this issue in the future.151
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SM5. A stronger version of Theorem 3.1.152

Theorem SM5.1. Under the condition of Theorem 3.1, in addition assume that153

the classical solution of HJ PDE exists. Then with the probability 1 − ϵ, the neural154

network ψθ satisfies155 ∫
Rd

∣∣∣∣∇(
∂

∂t
ψθ(x, ti) +H(x,∇ψθ(x, ti))

)∣∣∣∣ ρ̃ti(x)dx156

≤ Cθ,ih
r−2 +

1

N

N∑
k=1

|
∑

j∈N(i)

aije
k
j
1

h
|+ ν(θ, i)(|∇e(k)i |+ |e(k)i |) +R(θ, i)

√
lnM + ln 2

ϵ

2N
,157

at ti = ih, i = 1, . . . ,M . Here, aij is the coefficient and j ∈ N(i) denotes the node158

to be used in the numerical differentiation formula Ih(f)(ti) =
∑

j∈N(i) aijf(ti)
1
h of159

order r1 ≥ r − 2. The constants C(θ, i), ν(θ, i), R(θ, i) are non-negative depending160

on the parameter θ, time node ti, Hamiltonian H, initial distribution ρ0, the exact161

solution of HJ PDE and the numerical solution of temporal numerical scheme.162

Proof. We use the same notations as in the proof of Theorem 3.1. Let us denote163

the residual term of optimal neural network as164

R[ψθ](x, t) = ∇
(
∂

∂t
ψθ(x, t) +H(x,∇ψθ(x))

)
.165

and the residual term of the weak solution as

Rexa[ψ](x, t) := ∇
(
∂

∂t
ψ(x, t) +H(x,∇ψ(x, t))

)
.

Note that if ψ is the strong solution of HJ equation, then Rexa[ψ](x, t) = 0.166

For the sample particle x̃
(k)
ti , k ≤ N, i ≤M , it holds that167

1

N

N∑
k=1

Rψθ(x̃
(k)
ti
, ti)168

=
1

N

N∑
k=1

(
Rψθ(x̃

(k)
ti
, ti)−Rexaψ(x

(k)
ti
, ti)

)
169

=
1

N

N∑
k=1

(
Dψθ(x̃

(k)
ti
, p̃

(k)
ti
, ti)−Dψ(x(k)ti

, p
(k)
ti
, ti)

)
170

=
1

N

N∑
k=1

(
Dψθ(x̃

(k)
ti
, p̃

(k)
ti
, ti)−Dψθ(x

(k)
ti
, p

(k)
ti
, ti)

)
171

+
1

N

N∑
k=1

(
Dψθ(x

(k)
ti
, p

(k)
ti
, ti)−Dψ(x(k)ti

, p
(k)
ti
, ti)

)
.172

Next we estimate the two terms on the right hand side. First, we split the first term173

as174

Dψθ(x̃
(k)
ti , p̃

(k)
ti , ti)−Dψθ(x

(k)
ti , p

(k)
ti , ti)175

= ∇ ∂

∂t
ψθ(x̃

(k)
ti , ti)−∇ ∂

∂t
ψθ(x

(k)
ti , ti)176

+∇2ψθ(x̃
(k)
ti , ti)

∂

∂p
H(x̃

(k)
ti , p̃

(k)
ti )−∇2ψθ(x

(k)
ti , ti)

∂

∂p
H(x

(k)
ti , p

(k)
ti )177

+
∂

∂x
H(p̃

(k)
ti ,∇ψθ(x

(k)
ti , ti)))−

∂

∂x
H(p

(k)
ti ,∇ψθ(x

(k)
ti , ti))).178
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By using the finite support property of ρti and ρ̃ti and Lipschitz property of ψθ on179

bounded domain,180

|∇ ∂

∂t
ψθ(x̃

(k)
ti , ti)−∇ ∂

∂t
ψθ(x

(k)
ti , ti)| ≤ LA

θ,i|x̃
(k)
ti − x

(k)
ti |.181

Similarly, one can obtain that182 ∣∣∣∇2ψθ(x̃
(k)
ti , ti)

∂

∂p
H(x̃

(k)
ti , p̃

(k)
ti )−∇2ψθ(x

(k)
ti , ti)

∂

∂p
H(x

(k)
ti , p

(k)
ti )

∣∣∣183

≤ LB
θ,i(|x̃

(k)
ti − x

(k)
ti |+ |p̃(k)ti − p

(k)
ti |)184

and that185 ∣∣∣ ∂
∂x
H(p̃

(k)
ti ,∇ψθ(x

(k)
ti , ti)))−

∂

∂x
H(p

(k)
ti ,∇ψθ(x

(k)
ti , ti)))

∣∣∣(SM5.1)186

≤ LC
θ,i(|x̃

(k)
ti − x

(k)
ti |+ |p̃(k)ti − p

(k)
ti |).187

Here LA
θ,i, L

B
θ,i, L

C
θ,i are finite depending on the support of ρ0. Note that the global

error of the numerical scheme |x̃(k)ti − x
(k)
ti |+ |p̃(k)ti − p

(k)
ti | is of order r − 1. Thus,

1

N

N∑
k=1

(
Dψθ(x̃

(k)
ti , p̃

(k)
ti , ti)−Dψθ(x

(k)
ti , p

(k)
ti , ti)

)
∼ O(hr−1).

Notice that188

Dψθ(x
(k)
ti , p

(k)
ti , ti)−Dψ(x(k)ti , p

(k)
ti , ti)189

= ∇ ∂

∂t
ψθ(x

(k)
ti , ti)−∇ ∂

∂t
ψ(x

(k)
ti , ti)190

+∇2ψθ(x
(k)
ti , ti)

∂

∂p
H(x

(k)
ti , p

(k)
ti )−∇2ψ(x

(k)
ti , ti)

∂

∂p
H(x

(k)
ti , p

(k)
ti )191

+
∂

∂x
H(x

(k)
ti ,∇ψθ(x

(k)
ti , ti))−

∂

∂x
H(x

(k)
ti ,∇ψ(x

(k)
ti , t)).192

Using the fact that ekti = ∇ψθ(x̃
(k)
ti , ti)− p̃

(k)
ti and the mean value theorem, we get193

∇ψθ(x
(k)
ti , ti) = ∇ψθ(x̃

(k)
ti , ti) +∇ψθ(x

(k)
ti , ti)−∇ψθ(x̃

(k)
ti , ti)194

= ∇ψθ(x̃
(k)
ti , ti) +

∫ 1

0

∇2ψθ((1− α1)x̃
(k)
ti + α1x

(k)
ti , ti)(x

(k)
ti − x̃

(k)
ti )dα1(SM5.2)195

= p̃
(k)
ti + eki +O(|x̃(k)ti − x

(k)
ti |).196

Notice that in the error estimate, directly using the fact that ∇ψ(x̃ti , ti) = p̃ti197

and forward difference method may lead to a lower order of convergence in time for198

the numerical discretization since less information is known for the time derivative of199

p̃ti . Instead, our strategy is using a high order numerical differentiation formula to200

approximate the time derivative first and then applying the fact that∇ψ(x̃ti , ti) = p̃ti .201

To this end, we approximate ∂
∂t∇ψθ using a high order linear numerical differential202

formula Ih(∇ψθ), i.e., for any sufficient smooth function f.203

Ih(f)(ti) =
∑

j∈N(i)

aijf(tj)
1

h
= f ′(ti) +O(hr1),204
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where aij ∈ R and tj are the nodes close to ti.205

Using the numerical differentiation formula and the mean value theorem, as well206

as the fact that p
(k)
t = ∇ψ(x(k)t , t), it follows that207

∇ ∂

∂t
ψθ(x

(k)
ti , ti)−∇ ∂

∂t
ψ(x

(k)
ti , ti) =

∂

∂t
∇ψθ(x

(k)
ti , ti)−

∂

∂t
p
(k)
t |t=ti208

= Ih(∇ψθ(x
(k)
t , t))|t=ti − Ih(p

(k)
t )|t=ti +O(hr1)209

= Ih(∇ψθ(x
(k)
t , t)− p

(k)
t )|t=ti +O(hr1).210

According to (5), it follows that211

∇ ∂

∂t
ψθ(x

(k)
ti , ti)−∇ ∂

∂t
ψ(x

(k)
ti , ti) =

∑
j∈N(i)

aij(∇ψθ(x
(k)
tj , tj)− pktj )

1

h
+O(hr1)212

=
∑

j∈N(i)

aij(p̃
(k)
tj + ekj − pktj )

1

h
+O(hr−2) +O(hr1)213

=
∑

j∈N(i)

aije
k
j

1

h
+O(hr−2) +O(hr1).(SM5.3)214

Next we give the estimate for the term ∇2ψθ(x
(k)
ti , ti)

∂
∂pH(x

(k)
ti , p

(k)
ti )−∇2ψ(x

(k)
ti215

, ti)
∂
∂pH(x

(k)
ti , p

(k)
ti ). By using the mean value theorem and (5) again, we obtain that216

∇2ψθ(x
(k)
ti , ti)

∂

∂p
H(x

(k)
ti , p

(k)
ti )−∇2ψ(x

(k)
ti , ti)

∂

∂p
H(x

(k)
ti , p

(k)
ti )217

= (∇2ψθ(x
(k)
ti , ti)−∇p(k)ti )

∂

∂p
H(x

(k)
ti , p

(k)
ti )218

= (∇p̃(k)ti −∇p(k)ti )
∂

∂p
H(x

(k)
ti , p

(k)
ti ) +∇eki

∂

∂p
H(x

(k)
ti , p

(k)
ti ) +O(hr−1).219

Since the order of time integrator will not depends on the formulation of the coefficient220

of ODEs, one has ∇p̃(k)ti −∇p(k)ti ∼ O(hr−1). As a consequence, it holds that221

∇2ψθ(x
(k)
ti , ti)

∂

∂p
H(x

(k)
ti , p

(k)
ti )−∇2ψ(x

(k)
ti , ti)

∂

∂p
H(x

(k)
ti , p

(k)
ti )(SM5.4)222

= ∇eki
∂

∂p
H(x

(k)
ti , p

(k)
ti ) +O(hr−1).223

It suffices to estimate the term ∂
∂xH(x

(k)
ti ,∇ψθ(x

(k)
ti , ti))−

∂
∂xH(x

(k)
ti ,∇ψ(x

(k)
ti , t)).224

For this term, using the mean value theorem, (5) and the order of the numerical225

scheme, we get226

∂

∂x
H(x

(k)
ti
,∇ψθ(x

(k)
ti
, ti))−

∂

∂x
H(x

(k)
ti
,∇ψ(x(k)ti

, t))227

=

∫ 1

0

∂2

∂x∂p
H(x

(k)
ti
, α2∇ψθ(x

(k)
ti
, ti) + (1− α2)∇ψ(x(k)ti

, t))(∇ψθ(x
(k)
ti
, ti)−∇ψ(x(k)ti

, ti))dα2228

=

∫ 1

0

∂2

∂x∂p
H(x

(k)
ti
, α2∇ψθ(x

(k)
ti
, ti) + (1− α2)∇ψ(x(k)ti

, t))(p̃
(k)
ti

− p
(k)
ti

)dα2 +O(hr−1)

(SM5.5)

229

+

∫ 1

0

∂2

∂x∂p
H(x

(k)
ti
, α2∇ψθ(x

(k)
ti
, ti) + (1− α2)∇ψ(x(k)ti

, t))eki dα2.230
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Combining the estimates (SM5.3)-(SM5.5), we obtain that231

1

N

N∑
k=1

Dψθ(x
(k)
ti
, p

(k)
ti
, ti)−Dψ(x(k)ti

, p
(k)
ti
, ti)232

=
1

N

N∑
k=1

∑
j∈N(i)

aije
k
j
1

h
+∇eki

∂

∂p
H(x

(k)
ti
, p

(k)
ti

)233

+

∫ 1

0

∂2

∂x∂p
H(x

(k)
ti
, α2∇ψθ(x

(k)
ti
, ti) + (1− α2)∇ψ(x(k)ti

, t))eki dα2 +O(hr−2) +O(hr1).234

Taking r1 ≥ r − 2, and using (SM5.1) and the Taylor expansion, we further obtain235

that236

1

N

N∑
k=1

Rψθ(x̃
(k)
ti , ti)(SM5.6)237

= O(hr−2) +
1

N

N∑
k=1

( ∑
j∈N(i)

aije
k
j

1

h
+∇eki

∂

∂p
H(x

(k)
ti , p

(k)
ti )238

+

∫ 1

0

∂2

∂x∂p
H(x

(k)
ti , α2∇ψθ(x

(k)
ti , ti) + (1− α2)∇ψ(x(k)ti , t))e

k
i dα2

)
239

= O(hr−2) +
1

N

N∑
k=1

|
∑

j∈N(i)

aije
k
j

1

h
|+ ν(θ, i)(|∇e(k)i |+ |e(k)i |),240

where241

ν(θ, i) = sup
xti

∼ρti

(
| ∂
∂p
H(xti , pti)|+ |

∫ 1

0

∂2

∂x∂p
H(x

(k)
ti , α2∇ψθ(x

(k)
ti , ti)242

+ (1− α2)∇ψ(x(k)ti , t))dα2|
)
.243

To further estimate the expectation of the L1-residual at all the time nodes244

{t1, . . . , tT }, let us denote ρ̃ti = (Φ̃h ◦ · · · ◦ Φ̃h)♯ρ0 as the probability density function245

of the numerical solution x̃ti computed by the chosen scheme starting from x0 ∼ ρ0.246

For a fixed time ti and samples {x̃(k)ti }1≤k≤N ∼ ρ̃ti , by Hoeffding’s inequality (see e.g.247

[SM2]), for any 0 < δ < 1, with probability 1− δ, we can bound the gap between the248

expectation and the empirical average of the L1 residual as249

(SM5.7)∣∣∣∣∣
∫
Rd

R[ψθ](x, ti)ρ̃ti dx− 1

N

N∑
k=1

R[ψθ](x̃
(k)
ti , ti)

∣∣∣∣∣ ≤ sup
x∈supp(ρ̃ti

)

|R[ψθ](x, ti)|︸ ︷︷ ︸
denote as R(θ,i)

√
ln 2

δ

2N
.250

Similarly, for the samples {x(k)ti }1≤k≤N ∼ ρti , for any 0 < δ < 1, with probability251

1− δ, it holds that252

∣∣∣∣∣
∫
Rd

Rexa[ψ](x, ti)ρti dx− 1

N

N∑
k=1

Rexa[ψ](x̃
(k)
ti
, ti)

∣∣∣∣∣ ≤ sup
x∈supp(ρti )

|Rexa[ψ](x, ti)|︸ ︷︷ ︸
denote as Rexa(i)

√
ln 2

δ

2N
.

(SM5.8)

253
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Since we assume that supp(ρ0) is a bounded set, and the solution maps of the nu-254

merical scheme and the ODE system is continuous, then supp(ρ̃ti), supp(ρti) are also255

bounded. Thus R(θ, i), Rexa(i) is guaranteed to be finite. Indeed, Rexa(i) = 0 by256

our assumption. Combining (SM5.6), (SM5.7), and (SM5.8), and using the similar257

arguments as in the proof of Theorem 3.1, we obtain the desired result where Cθ,ih
r−2258

is the upper bound of O(hr−2).259

SM6. Two more numerical examples.260

SM6.0.1. Example with Double Well Potential. We set potential V as a261

double well potential function262

V (x) =

d∑
k=1

1

10d
x4k +

8

5d
x2k +

1

2d
xk.263

We take the initial condition as u(x, 0) = g(x) with g(x) = 1
2 |x|

2, the initial distribu-264

tion ρa as the standard normal distribution.265

We first test this example with d = 2. We solve the equation on [0, 2]. The phase266

portrait of the corresponding Hamiltonian system with the initial condition x0, p0 =267

x0 is shown in Figure SM1. It can be seen from this portrait that some characteristics268

collide as time passes over a certain threshold T∗. (Here we mean the collision in the269

x space, not the phase space (x, p).) We obtain the results demonstrated in Figure

Figure SM1: Phase portrait of the Hamiltonian system associated with the double
well potential. Here 0 ≤ t ≤ 5, we use different colors to separate time intervals:
green-[0, 1); blue-[1, 2); orange-[2, 3); red-[3, 4); pink-[4, 5).

270
SM2. As shown in these figures, our method is able to match ∇ψθ(·, t) well with271

the real momentums of particles when time t is less than 0.8. However, matching272

disagreements can be observed at t = 1.2, 1.6, 2.0, mostly near the sample boundary.273

We also test our method on this example with d = 20 and solve the equation274

on [0, 3]. We demonstrate the numerical results in Figure SM3. The 1
N

∑N
k=1 |e

(k)
ti |2-275

versus-ti plot is presented in Figure SM5 (left subfigure).276

SM6.0.2. Duffing Oscillator. We consider the Duffing oscillator with d = 2,277

and the Hamiltonian278

H(x, p) =
1

2
|p|2 + 1

2
|x|2 + 1

4
|x|4.279
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(a) t = 0.0 (b) t = 0.4 (c) t = 0.8 (d) t = 1.2 (e) t = 1.6 (f) t = 2.0

Figure SM2: Plots of vector field ∇ψθ(·, t) (green) with momentums of samples (red)
at different time stages.
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(b) t = 0.5
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(c) t = 1.0
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(d) t = 1.5
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(e) t = 2.0
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(f) t = 3.0

Figure SM3: Plots of the vector field ∇ψθ(·, t) (green) with momentums of samples
(red) at different time stages on the 6th− 16th plane.

We select the initial condition as g(x) = 1
2 |x|

2. We pick ρ0 = N (0, 2I) and solve the280

equation on [0, 0.5].281

The graphs of the numerical solution ψθ(·, t) at different time stages t are shown282

in Figure SM4. The comparison between the learned vector field ∇ψθ(·, t) and the283

exact momentum of samples are shown in Figure SM4. They have a good agreement284

before time T∗ = 0.2. The 1
N

∑N
k=1 |e

(k)
ti |2-versus-ti plot is presented in Figure SM5285

(left subfigure).286

We summarize the hyperparameters used in our algorithm for each numerical287

example in the following table. The notations are same as in the section 4.288

Example (dimension) L d̃ M MT N lr NIter

SM6.0.1 (d = 20) 6 50 120 1 8000 0.5× 10−4 8000
SM6.0.2 (d = 2) 7 24 100 2 2000 10−4 12000

Table SM1: Hyperparameters of our algorithm for examples SM6.0.1 - SM6.0.2.
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(a) t = 0.05
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(b) t = 0.1
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(c) t = 0.15
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(d) t = 0.2
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(e) t = 0.35
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(f) t = 0.5
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(j) t = 0.2
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(l) t = 0.5

Figure SM4: (Up row) Graphs of our numerical solution ψθ at different time stages;
(Down row) Comparison of ∇ψθ(·, t) (green) and the momentum of samples (red) at
different time stages.

(a) Example SM6.0.1
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Figure SM5: Plots of the loss 1
N

∑N
k=1 |e

(k)
ti |2 versus time ti for examples SM6.0.1,

SM6.0.2.
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