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SUPPLEMENTARY MATERIALS: A SUPERVISED LEARNING
SCHEME FOR COMPUTING HAMILTON-JACOBI EQUATION VIA
DENSITY COUPLING*

JIANBO CUI, SHU LIU¥, AND HAOMIN ZHOUS

SM1. Proof of Lemma 2.1 . In order to prove Lemma 2.1, we first prove the
following result.

LEMMA SM1.1. Suppose f € C3(R?), and ol < V?f < LI with L > a > 0. Then
Vf:RY = R? is invertible, if we denote (Vf)™1 as the inverse function of Vf, we
have (Vf)~t € CL{REGRY), and V((Vf)L) = (V2f oV~ H~L

Proof. We first prove that V f is invertible. For arbitrary p € R%, consider g(x) =
—p-x+f(), then g is a—strongly convex. There exists unique z’ € R% s.t. Vg(z') = 0,
ie., Vf(2") = p; furthermore, for any z” such that V f(z”) = p we have Vg(z") =0,
the uniqueness yields 2 = x/. This proves that Vf is a bijective map on R%. We
denote (Vf)~! as the inverse map of Vf. To show the continuity of (Vf)~!, for any
€ > 0, choose § < ae. For fixed p € R?, consider any q with ||¢ — p|| < 6, denote
x=Vfp), y = Vf(q), from a—strongly convexity, we have |V f(y) — Vf(z)| >
ally — x|, this yields [|[Vf~1(q) — V7 (p)| < ”q;iml < e. This verifies the continuity
of Vf~L

We then show (Vf)~! is differentiable. Since f € C%, Vf € C'. So Vf is
differentiable, which indicates that for any z,y € RY,

Vi) — V)=V f(2)(y— =) +r(z,y),

where 7 : R¢ x R? — R? is certain vector function satisfying limy ., % =
Denote p = Vf(z),q = Vf(y), the above equation yields,
q—p=V2f(@) (VI a) = VI Hp) +r(a,y).
This is
(SM1.1) VI @) = VI p) = (V2 f(@) " g —p) = (V2 f(2) " r(z,y).

Denote 7(q,p) = —(V2f(z)) " r(z,y), we have

R 1y lr@ )l lly — 2|
v? - . N —npl-
17(g P < IV=f ()|l lv—zl  lq=pl lg — pll

Since ||V2f(z)71 < 5 and HZ:;” = va(%:mv“f(z)u < % This yields
. L |r(z,y)
g, p)|| £ — - |la —pll-
(el < DL g
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Now send g — p, due to the continuity of Vf~!, we know y — . The above inequality
yields 7(q,p) = o(|lq — p||), which verifies the differentiability of V f~!. Furthermore,
by (SM1.1), we know the Jacobian of V=1 is V(Vf~1)(p) = (V2f(Vf(p)))~},
which is continuous. This verifies Vf~! € C. 0

Proof of Lemma 2.1. By Lemma SM1.1, we know V f is bijective, and we denote
Vf~! € C! as its inverse. According to the definition of Legendre transformation,

f*(p) = sup{&-p— f(§)},

EeRd

since £ - p — f(€) is a—strongly concave as a function of &, for any p € R?, there
is a unique maximizer &, which solves V(&) = p, ie., & = (Vf)~H(p). Thus
*(p) = (VHp) - p— f(VF)"Lp)), since V=1 € CL, f* is at least C!, use
V(VIp) = (V2F(VfH(p) ", we have

VP =V 0+ V) = F(VF ) =V p).

Since Vf~! € C!, we know Vf* € C!, this leads to f* € C2.

Furthermore, we have V2f*(p) = V(Vf~1(p)) = [V2f(Vf~1(p))] !, this yields
I VA= ig

On the other hand, recall that &, = Vf~1(p) = Vf*(p), we have f*(p) = Vf*(p)-
p— f(Vf*(p)). Thus,

O+ —ap=fg+Vf p-fVfP)-qrp
(

For the third equality, we use the fact that Vf*(p) = (Vf)~!(p) for any p € R™

To prove the fact that f(¢) + f*(p) —¢-p = Dy+(p : Vf(q)), one only needs to
treat g = f* € C*(R?) with +7 2 V2¢g < 11 and ¢g* = f** = f,* and then apply the
above argument to g. 0

SM2. Proof of Theorem 2.1.

Proof of Theorem 2.1. Given the Lipschitz condition on the vector field (%HT,
%H T)T, it is known that the underlying Hamiltonian system considered admits
a unique solution with continuous trajectories for arbitrary initial condition (Xo,
Vy(Xo)).

Let us recall the probability space (€2, F,P) used to describe the randomness of
the Hamiltonian system. Since

E, / Do (V( X4 (w), 1) : Py(w)) dt| =0,
0

then by the fact that Bregman divergence Dy, is always non-negative, we obtain
T o~
/ Dy (Vip(X(w),t) : Pi(w)) dt =0, P-almost surely.
0

*This is true for any f € C(R?) that is convex, c.f. Chapter 11 of [SM1].
SM2
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Thus, there exists a measurable subset ' C Q with P(Q2') = 1 such that
T ~
/ Dia(VO(X (), 1) : Po(w))) dt =0, Vo €.
0

By using the continuity and non-negativity of DH7m(V@/b\(Xt(w’),t) : Py(w')) with
respect to t, we have

~

(SM2.1) V(X (W), t) = Py(w') for 0<t<T.

When ¢ = 0, we have Vi)(Xo(w'),0) = Py(w’). Recall the initial condition of the
Hamiltonian System, we have Pgy(w’) = Vg(Xo(w')). This yields Vi)(Xo(w'),0) =
Vg(Xo(w")) for any w’ € ', which yields

(SM2.2) Vip(z,0) = Vg(z) for all = € Spt(po).
On the other hand, for ¢ € (0,T], by differentiating on both sides of (SM2.1) w.r.t. ¢,

we obtain

~

(SM2.3) V(X (W), 1) + V(X (), ) X (w) = Py(w).

9
ot
Recall that we have

0 0

Xt = %H(Xt,Pt) = %H(Xt7v$(Xtﬂt))a
. o 9 >
P, = —%H(Xt,Pt) = 7%H(Xt,V1/1(Xt,t))-

Plugging these into (SM2.3) yields

0 ’ -~ ’
71X (), VO (), 1)
_ %H(Xt(m,vi(xt(w'),t)),

%W(Xt(w’» £) + V(X (), 1)

which leads to

\Y (;&(Xt(w,)at) + H(x, V@(Xt(w/)’t))> =0, V W e,

Since the probability density distribution of X is p;, we have proved that

(SM2.4) v (gtiz;(m, t)+ H(z, V&(x,t))) =0, V x € Spt(ps).

Combining (SM2.2) and (SM2.4) proves this theorem.
2 -~ ~
On the other hand, if " (v) = 0. By using the fact that |V (X¢(w),t) —

po,9,T
P, (w)|? is continuous and non-negative for a.s. w € €2, we can repeat the previous
proof to show the same assertion still holds. ]
SM3
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SM3. Proof of Lemma 2.2.

Proof of Lemma 2.2. Let us first consider the term
(SM3.1) [ vt @) = Ex 0(X0,1)
R

By differentiating (SM3.1) w.r.t. time ¢, we obtain

% (/R w(x,t)pt(x)dx) =E [v¢(xt7t) X+ (Mé()ft,t)} :

The right-hand side of the above equation equals

0
Ex, p,Vi(X0.t) - L H(X,, P,) +Ex, [

2 aw(Xt,t)}

ot

0 0
= » Vi(z,t) - a—pH(m,p) dpe(z,p) + /]Rd %pt(x)dm.

Combining the above equations, we have
(SM3.2)

[ —owte. o) = [ Vet 5 Hw) dutor) - 5 ( /. w<x,t>pt<x>dx) .

R2d

Plugging (SM3.2) into the formula of .Z,, 4 7(¢) yields that

gﬂoquT(’(/))

[ ([, voeo- aen duen - 5 ([ vwon@a)) a
+/0 /]R{d _H(xv VWUUJ))M(:E) dx dt
+/Rd ¥(z, T)pe(x) da:—/Rdi/J(Jc,O)pO(x) de.
:/0 /W(VW b %H (w,0) — H(z, V(. 1)) dpe(, p)et
:/0 /de(w’(% £ (%H(x,p) — H(z,Vi(z,t)) — H (z, %H(az,p))) dpus (, p)dt
(SM33) + A 2 H* (x, %H(C&p)) d,U/t (x’p)dt

The second equality is obtained by integrating the time-derivative of (SM3.1) on [0, T]
as well as by using the fact that p;(-) is the density of X —marginal of p;.

Based on Lemma 2.1, choosing f as H* and f* as the Hamiltonian H, and letting
q= B%H(x,p) and p = Vi(z,t), we obtain

9 H(w,p) + H(z, Vi, 1) — Vib(a.t) - - H(z,p)

H*
(@ dp dp
., 0
=Dy .(V(z,t) : V,H (z, %H(x,p)))
Since %H*(x, ) = (S%H(x, -))~1, the right-hand side of the above equality leads to
Dy (Vi(x,t) : p). Plugging this back to (SM3.3) proves Lemma 2.2. 0

SM4
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SM4. Discussion on the dependence on py. We give a brief discussion about
the dependence on pg for the computed solution ¢y via an example with the classical
Hamiltonian H(z,p) = 1|p|?> + V(z). Assume that the solution ¢y exists for any
initial density and is regular enough in time and space. For simplicity, we ignore the
numerical error caused by symplectic integrator and consider the difference between
19,po., and g p, , with different initial densities po1 and pg 2..

Then by remark 2.1, one can verify for any test function f € C*([0,T] x R%)

T
(SM4.1) /0 y (V¢0,p0,i($7 t) — pi(x, t))Vf(ac, t)pi(z, t)dzdt = 0.

Here i < 2, p;(z,t) is the marginal density of the position of the particle X} with differ-
ent initial data x((J ), and Pi(x,t) = [oa pd,ut (p|x) with ,u (p|:1c) being the conditional

distribution of the joint distribution ,ugz)( , D).

In particular, when the characteristic lines do not intersect, by (SM4.1) one
can infer that Vg ,, , (2,t) = Vg p,,(2,t) in the intersection of the supports of
po.1(t,") and poa(t,-). Moreover, in this case p;(x,t) = P with the initial value
(Xt(l))_l(ac)7 Vg((Xt(z))_l(x)) as the initial value of the underlying Hamiltonian ODE.
Since characteristic lines do not intersect, it is not hard to see that
(SM4.2) @ <C s [Ve@) i<2,

zesupp(po,i)
p1(z,t) = pa(z,t), for any fixed (z,1).

By subtracting (SM4.1) for ¢ = 1,2, one further has that
T
(SM4.3) / / Vg po , (2, 1) — wg,po‘z(a;,t))v F(a, )pr(x, t)dwdt
R
b [ Pl OV 00a(00) - 1ot
/ / p1(x,t) — pa(x, t))Vf(z,t)pl(:c,t)da:dt
Rd
- / /R po(z, )V f(x,t)(p1 (2, t) — p2(z,t))dzdt = 0.
0 d

Taking f = 109,y (%,1) — Vg, p, (2, ) and using Young’s inequality, by the sym-
metry of po,; and (SM4.2), one can obtain

T
sup/ /d |v'¢}9,00,1 (Z‘, t) - V’lpﬂ,pm2 (33, t)|2pi<x’ t)d.’lﬁdt
0 R

i<2

T
<C [ [ (14 1960 @ OF + Vg, 2,0 o3 ,8) = pa, )
0 R4

T
+ C/ /d (1 + |p1(z, t))? +p‘2(x,t)|2> Ip1(z,t) — pa(z,t)|dzdt.
0 R

This, together with the fact that p;(¢, ) is continuous w.r.t. the initial density, implies
that the approximate solution 1)y is continuous w.r.t. the initial density.

After the characteristic lines intersect, the analysis is more complicate and relies
on the properties of conditional distribution ,ugl)(p|x) and the averaged momentum
pi(t, ). Tt is beyond the scope of this current work. We hope to address and study

this issue in the future.
SM5
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SM5. A stronger version of Theorem 3.1.

THEOREM SMb.1. Under the condition of Theorem 3.1, in addition assume that
the classical solution of HJ PDE exists. Then with the probability 1 — €, the neural
network g satisfies

L. V(%W%ti)+H(w7we(x,ti>>)\ oo ()

N
< Coah™ 2+ LSS aiel 1+ w0,V + 7)) + B(0,0)
k=1 JEN()
att, =th, i =1,...,M. Here, a;; is the coefficient and j € N(i) denotes the node
to be used in the numerical differentiation formula I"(f)(t;) = 2 jeNG) aij f(t;) 3 of
order 11 > r — 2. The constants C(0,1),v(0,1), R(0,1) are non-negative depending
on the parameter 0, time node t;, Hamiltonian H, initial distribution pg, the exact
solution of HJ PDE and the numerical solution of temporal numerical scheme.

lnM—l—ln%
2N ’

Proof. We use the same notations as in the proof of Theorem 3.1. Let us denote
the residual term of optimal neural network as

0
Rlnl(e.t) = 9  1o0lant) + Hlz, ba(a)).
and the residual term of the weak solution as

Rezal¥](x,t) :=V (gtw(amt) + H{(z, V¢(x,t))) .

Note that if ¢ is the strong solution of HJ equation, then R, [¢](z,t) = 0.
For the sample particle xg )k < N,i < M, it holds that
N

1 (K
N:fw@ﬂm

B
Il

R1/’6 (iglj)y tz) - Rezcﬂ/}(mif), tl))

2|~

2|~

Il
Z| =
1= 1= I

i

(
(D¢9(~(f)7ﬁ§k) t) — 'D¢( (k) UC),U))
(

Dy, 5 1) — Dua (el pi, 1)

>
Il
i

1
+ v 20 (Puotal? 1) = Dol o 1),

Next we estimate the two terms on the right hand side. First, we split the first term
as

Dijg (5(k)713(tk) t:) — Dibg ( (k) (k),ti)
we(~<’“ i) — v—we(mt?,ti)

~ 0 0
- v2w0<x§f>,ti>fﬂ< W) = (el )= H(z (Y pi?)
dp dp
0 0
+ o @ Vel 1)) = 5= Hpi Vie(ay) ).
SM6
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By using the finite support property of p;, and p;, and Lipschitz property of 1 on
bounded domain,

\v V(@) 1) = Vo 0 ol )] < L — ).
Similarly, one can obtain that

~ 0 .~ 0
V200(@) ) HEP 5P = P20l ) H o)

Op ti dp
~k k k
< LB (17 — 2P|+ 5" — piP))
and that
0
(SM5.1) @Hﬁ’”,vwe(m,ﬁf%t»)) S H Vel )]
~(k (k k
LG (17 — |+ 5" — pi)).

Here L} Z,Lgi,Lgi are finite depending on the support of py. Note that the global

error of the numerical scheme |§g{”‘) - zgc)| + \f)ﬂc) pgf)| is of order r — 1. Thus,

N
1 N —
= 2 (Puo@ B 1) = Dua(al ol 1) ~ O ).
k=1

Notice that

m(“% Dt - m( NN
2 wota ““’t) Vo, 1)
0
+v2¢9<xt ,ma—p (a9t~ ¥ <<’“>t>apH( v it
0 0
o At Vot 1) = 5 Har, V(g 1)),
~(k)

Using the fact that efb_ = ng(fgc),t ) —P;,” and the mean value theorem, we get

Vo (), 1) = V(@) 1) + Ve () 1) — Vape (B 1)

(SM5.2) = Vo@D, 1) + / V2e((1 — an)@? + arz? 1) (P — 79 day
0
k k ~(k k
=D, ek +0(F) — ).

Notice that in the error estimate, directly using the fact that Vi (Zy,,t;) = p,
and forward difference method may lead to a lower order of convergence in time for
the numerical discretization since less information is known for the time derivative of
Dt,. Instead, our strategy is using a high order numerical differentiation formula to
approximate the time derivative first and then applying the fact that Vo) (z,,t;) = py, .
To this end, we approximate %VQ[)@ using a high order linear numerical differential
formula I, (Vi)y), i.e., for any sufficient smooth function f.

L) = Y auflt)y = £/(6) +OG™),

JEN(3)

SM7

This manuscript is for review purposes only.



219

220
221

222

223

224

225
226

229

230

where a;; € R and ¢; are the nodes close to ;.
Using the numerlcal differentiation formula and the mean value theorem, as well
as the fact that p = Vi(z k)7 t), it follows that

0 0
V§we(x§f),ti) —Vaw(mif),t-) V7/1 (g, () i) — 8tptk)|t t
=Ih<we<x£’“ ,t>>|t:t — L) izr, + O(R™)
= (Ve (@™ 8) — ) i—s, + O(R™).

According to (5), it follows that

1
Vo 1)~V o ) = 3wy (Tl 1) — ok +OR™)
JEN ()
= 3 ay P + ek~ o) 3 + O + 00
JEN(3)
]' r— T1
(SM5.3) - ’Z‘ ajefEJrO(h )+ O(h™).
JEN (i)

Next we give the estimate for the term V21 (acgf), tz‘)a%H( (k)7p§k)) V%ﬁ(xgc)

,ti) apH (xg“), p§ )). By using the mean value theorem and (5) again, we obtain that

9 0
oy HG ) = 0l 0 o H ) pll)

Op
= (V2o (2”, 1) — Vi)

V() 1)

9 (k) (0
7H( ’pt )
dp

B
= (Vi — Vi) —H(" p?) + Ve

k k r—
D, H(zy) pi))) + O ).

" op
Since the order of time integrator will not depends on the formulation of the coefficient
of ODEs, one has Vﬁ{tf) - sz(f) ~ O(h"1). As a consequence, it holds that

0
(SM5.4) V(i i) H G pi!) = Pt ) 5 H Gl pit)
0
- vez aﬁ (mgk)7 Ef)) + O(hr_l)'

It suffices to estimate the term a H(z; (k) , Vipg(x k), t;)) — a%H(xgc), Vzﬁ(ng), t)).

For this term, using the mean value theorem (5) and the order of the numerical

scheme, we get
9 r(p®

o ) Vo (el 1) -

9y
ox

/ gy 11 V(@i t) + (1= a2) Vo, ) (Vi(i?s t) = Vo (i, 1) das
(SM5. 5

H(@®, V(1))

H(z aa Vo 1) + (1 — a2) V(@ ) 3 — pi)das + O™ )

6:08

?
+ | pagpH @t a2 Vee(@l ) + (1 = ax) Veeil el da.
0

SM8
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231 Combining the estimates (SM5.3)-(SM5.5), we obtain that

232 szd’ o pi ) — Dy (M pi) 1)

, a
233 = —Z > a”ejh 1+ Ve L H@E®, po)
k=1jEN (i)
1
234 + aaa H(@®, asVipe (¥ 1) + (1 — a2) V(P 1)) eF daz + O(h"72) + O(h™).
0

235 Taking r1 > r — 2, and using (SM5.1) and the Taylor expansion, we further obtain
236 that

N
1 ~
237 (SM5.6) N Z Rwe(xif), t;)

k=1
L ¢ O 1z

59 r— 2 k k
238 O(h Z(Z h+VeZa H(xy,”,py.”)

Ic:l JEN(3)

0?

239 / 87 9% angg( t;)+ (1 — (12)V¢(.’E§f)7t))e§da2)
Ny r— 2 . (k)
240 O(h Z| Z a;je Jh 1/(9,2)(|Ve \+|e D,

’f 1 jEN(i)
241  where
21 00)= s (15 A H(2f?, 0900 ol )
243 v (- ag)v¢(x§f>,t))da2|).
244 To further estimate the expectation of the L'-residual at all the time nodes

245 {t1,...,tr}, let us denote p;, = (i)h 0---0 éh)ﬁpo as the probability density function
246 of the numerical solution Z;, computed by the chosen scheme starting from xg ~ po.
247  For a fixed time ¢; and samples {i‘gf)}lgkgjv ~ pt,, by Hoeffding’s inequality (see e.g.
248 [SM2]), for any 0 < 6 < 1, with probability 1 — §, we can bound the gap between the
249 expectation and the empirical average of the L' residual as

(SM5.7)

< sup  [R[ye](x,ti)]
x€supp(pt;)

N
R[] (z,ti)pr, dx — Z [l (#F) 1)

Rd

denote as R(6,i)

251 Similarly, for the samples {xif)}lngN ~ pt,, for any 0 < § < 1, with probability

1 — 4, it holds that
In 2
sup ‘Rewa [d}] (iE, tl)' \/76
xzEsupp(pt;) 2N

(SM5.8)
denote as Regq (%)

[\)
t
[\]

o /R st do— -3 Renali2
293 exa Pt; AT N Z exra w] t )
k=1

SM9
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Since we assume that supp(pp) is a bounded set, and the solution maps of the nu-
merical scheme and the ODE system is continuous, then supp(g;, ), supp(p:,) are also
bounded. Thus R(0,7), Rezq(7) is guaranteed to be finite. Indeed, Reyq(i) = 0 by
our assumption. Combining (SM5.6), (SM5.7), and (SM5.8), and using the similar
arguments as in the proof of Theorem 3.1, we obtain the desired result where Cg7ihr_2
is the upper bound of O(h"~2). 0

SM6. Two more numerical examples.

SM6.0.1. Example with Double Well Potential. We set potential V' as a
double well potential function

d
Z $k+ $k+2d

We take the initial condition as u(z,0) = g(z) with g(z) = %|z|?, the initial distribu-
tion p, as the standard normal distribution.

We first test this example with d = 2. We solve the equation on [0, 2]. The phase
portrait of the corresponding Hamiltonian system with the initial condition zq, pg =
x¢ is shown in Figure SM1. It can be seen from this portrait that some characteristics
collide as time passes over a certain threshold T.. (Here we mean the collision in the
x space, not the phase space (z,p).) We obtain the results demonstrated in Figure

Figure SM1: Phase portrait of the Hamiltonian system associated with the double
well potential. Here 0 < t < 5, we use different colors to separate time intervals:
green-[0, 1); blue-[1,2); orange-[2, 3); red-[3,4); pink-[4, 5).

SM2. As shown in these figures, our method is able to match Viy(-,t) well with
the real momentums of particles when time ¢ is less than 0.8. However, matching
disagreements can be observed at ¢t = 1.2,1.6, 2.0, mostly near the sample boundary.

We also test our method on this example with d = 20 and solve the equation
on [0,3]. We demonstrate the numerical results in Figure SM3. The + Zszl |e§f)|2—
versus-t; plot is presented in Figure SM5 (left subfigure).

SM6.0.2. Duffing Oscillator. We consider the Duffing oscillator with d = 2,
and the Hamiltonian

1 1 1
H(z,p) = s|p* + = |2|* + ~|=|*.
2 2 1
SM10
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Figure SM2: Plots of vector field Vg (+,t) (green) with momentums of samples (red)
at different time stages.

(a)t=00 (b)t=05 ()t=10 (d)t=15 ()t=20 (f)t=3.0

Figure SM3: Plots of the vector field Viy(-,t) (green) with momentums of samples
(red) at different time stages on the 6th — 16th plane.

280 We select the initial condition as g(z) = |z|>. We pick pg = N(0,21) and solve the
281 equation on [0,0.5].

282 The graphs of the numerical solution (-, t) at different time stages ¢ are shown
283 in Figure SM4. The comparison between the learned vector field Viy(+,t) and the
284 exact momentum of samples are shown in Figure SM4. They have a good agreement
285 before time T, = 0.2. The £+ S |e§f) |2-versus-t; plot is presented in Figure SM5
286 (left subfigure).

287 We summarize the hyperparameters used in our algorithm for each numerical
288 example in the following table. The notations are same as in the section 4.

Example (dimension) [ L d M My N Ir Niter

SM6.0.1(d=20) |6 50 120 1 8000 0.5x10* 8000
SM6.0.2 (d = 2) 7 24 100 2 2000 102 12000

Table SM1: Hyperparameters of our algorithm for examples SM6.0.1 - SM6.0.2.
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Figure SM4: (Up row) Graphs of our numerical solution 1y at different time stages;
(Down row) Comparison of Viy(-,t) (green) and the momentum of samples (red) at
different time stages.
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Figure SM5: Plots of the loss 3 lecvzl |e§f)|2 versus time t; for examples SM6.0.1,
SM6.0.2.
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