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Abstract. We derive the Fokker-Planck equation on the parametric
space. It is the Wasserstein gradient flow of relative entropy on the sta-
tistical manifold. We pull back the PDE to a finite dimensional ODE on
parameter space. Some analytical examples and numerical examples are
presented.
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1 Introduction

Fokker-Planck equation, a linear evolution partial differential equation (PDE),
plays a crucial role in stochastic calculus, statistical physics and modeling
[13,16,18]. Recently, people also discover its importance in statistics and machine
learning [11,15,17]. Fokker-Planck equation describes the evolution of density
functions of the stochastic process driven by a stochastic differential equation
(SDE).

There is another viewpoint of Fokker-Planck equation based on optimal
transport theory. It treats the equation as the gradient flow of relative entropy
on probability manifold equipped with Wasserstein metric [5,14]. Recently, the
studies have been extended to information geometry [1–3], creating a new area
known as Wasserstein information geometry [7,9,10]. Inspired by those studies,
in this paper, we derive the metric tensor on parameter space by pulling back the
Wasserstein metric via the parameterized pushforward map. Then we compute
the Wasserstein gradient flow (an ODE system) of relative entropy defined on
parameter space. This leads to a statistical manifold version of Fokker Planck
equation, which can be viewed as an approximation of the original PDE.

Our work is motivated by two purposes, (1) reducing the evolution PDE to a
finite dimensional ODE system on parameter space; (2) applying parameterized
pushforward map to obtain an efficient sampling method to generate samples
from SDE. This is different from Markov Chain Monte Carlo (MCMC) methods
[12] or momentum methods [16]. In this brief presentation, we sketch the the-
oretical framework with illustrations on several examples. The complete results
will be reported in an extended version [8].
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2 Parametric Fokker-Planck Equation

In this section, we briefly review the fact that Fokker-Planck equation is a
Wasserstein gradient flow of relative entropy. We then introduce a Wasserstein
statistical manifold generated by parameterized mapping function. Based on it,
we derive the parametric Fokker-Planck equation as the gradient flow of param-
eterized relative entropy.

2.1 Fokker-Planck Equation

Consider the Fokker-Planck equation:

∂ρ(t, x)
∂t

= ∇ · (ρ(t, x)∇V (x)) + βΔρ(t, x), ρ(0, x) = ρ0(x). (1)

Here ∇·, ∇ is the divergence and gradient operator in R
d, ∇V is the drift function

and β > 0 is a diffusion constant. There are several understandings for the
Eq. (1).

On the one hand, consider the stochastic differential equation:

dXt = −∇V (Xt) +
√

2βdBt, X0 ∼ ρ0. (2)

Here {Bt}t≥0 is the standard Brownian motion. It is well known that the density
function ρ(t, x) of stochastic process Xt, i.e. Xt ∼ ρ(t, x), satisfies the Fokker-
Planck equation (1).

On the other hand, Eq. (1) is the Wasserstein gradient flow of relative entropy.
Denote the probability space supported on R

d:

P =
{

ρ :
∫

ρ(x)dx = 1, ρ(x) ≥ 0,

∫
|x|2ρ(x) dx < ∞

}

Equipped with the Wasserstein metric [6,14], P is an infinite dimensional Riem-
manian manifold. Denote

TρP =
{

ρ̇ :
∫

ρ̇(x)dx = 0
}

.

Consider a specific ρ ∈ P and ρ̇i ∈ TρP, i = 1, 2. The Wasserstein metric tensor
gW is defined as:

gW (ρ)(ρ̇1, ρ̇2) =
∫

∇ψ1(x) · ∇ψ2(x)ρ(x) dx,

where ρ̇i = −∇ · (ρi∇ψi) for i = 1, 2. Here gW is a metric tensor, which is
a positive definite bilinear form defined on tangent bundle TP = {(ρ, ρ̇) : ρ ∈
P, ρ̇ ∈ TρP}.
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The Riemannian gradient in (P, gW ) is given as follows. Consider a smooth
functional F : P → R, then

gradW F(ρ) = gW (ρ)
−1

(
δF
δρ

)
(x)

= −∇ · (ρ(x)∇ δ

δρ(x)
F(ρ)),

(3)

where δ
δρ(x) is the L2 first variation at variable x ∈ R

d. In particular, consider
the relative entropy

F(ρ) = β

∫
ρ(x) log

ρ(x)

1
Z

e
− V (x)

β

dx =

∫
V (x)ρ(x)dx + β

∫
ρ(x) log ρ(x)dx + β log(Z).

(4)
Here Z =

∫
e

V (x)
β dx is the normalizing constant for e

V (x)
β .

Then ∇
(

δF
δρ

)
= ∇V + β∇ log ρ, and (3) forms

∂ρ

∂t
= −gradW F(ρ) = ∇ · (ρ∇V ) + β∇ · (ρ∇ log ρ)).

Notice ∇ log ρ = ∇ρ
ρ , then ∇ · (ρ∇ log ρ) = ∇ · (∇ρ) = Δρ. The above equation

is exactly Fokker-Planck equation (1).
From now on, we apply the above geometric gradient flow formulation and

derive the Fokker-Planck equation (1) on parameter space.

2.2 Parameter Space Equipped with Wasserstein Metric

We consider a parameter space Θ as an open set in R
m. Denote the sample space

M = R
d. Suppose Tθ is a pushforward map from M to M , which is parametrized

by θ. For example, we can set Tθ(x) = Ux+ b, with θ = (U, b), U ∈ GLd(R), b ∈
R

d; we can also let Tθ be a neural network with parameter θ. We further assume
that Tθ is invertible and smooth with respect to parameter θ and variable x.

Denote p ∈ P as a reference probability measure with positive density defined
on M . For example, we can choose p as the standard Gaussian. We denote ρθ

as the density of Tθ#p.1 We further require:
∫ |Tθ(x)|2 dp(x) < ∞ holds for all

θ ∈ Θ. Then ρθ ∈ P for each θ ∈ Θ. Denote PΘ = {ρθ = ρ(θ, x)|θ ∈ Θ}, then
PΘ ⊂ P.

Now the connection between P and Θ is the pushforward operation T# :
Θ → PΘ ⊂ P, θ 	→ ρθ. In order to introduce the Wasserstein metric to parameter
space Θ, we assume that T# is an isometric immersion from Θ to P. Under this
assumption, the pullback (T#)∗gW of the Wasserstein metric gW by T# is the
metric tensor on Θ. Let us denote G = (T#)∗gW . Then for each θ, G(θ) is a

1 Let X, Y be two measurable spaces, λ is a probability measure defined on X; let
T : X → Y be a measurable map, then T#λ is defined as: T#λ(E) = λ(T−1(E)) for
all measurable E ⊂ Y . We call T#p the pushforward of measure p by map T .
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bilinear form on TθΘ 
 R
m, thus G(θ) can be treated as an m × m matrix.

Computation of G(θ) is illustrated in the following theorem:

Theorem 1. Suppose T# : Θ → P is isometric immersion from Θ to P. Then
the metric tensor G(θ) at θ ∈ Θ is m×m non-negative definite symmetric matrix
and can be computed as:

G(θ) =
∫

∇Ψ (Tθ(x))∇Ψ (Tθ(x))T dp(x), (5)

Or in entry-wised form:

Gij(θ) =
∫

∇ψi(Tθ(x)) · ∇ψj(Tθ(x)) dp(x), 1 ≤ i, j ≤ m.

Here Ψ = (ψ1, ...ψm)T and ∇Ψ is m × d Jacobian matrix of Ψ . For each
k = 1, 2, ...,m, ψk solves the following equation:

∇ · (ρθ∇ψk(x)) = ∇ · (ρθ ∂θk
Tθ(T−1

θ (x))). (6)

Proof. Suppose ξ ∈ TΘ is a vector field on Θ, for a fixed θ ∈ Θ, we first compute
the pushforward (T#|θ)∗ξ(θ) of ξ at point θ: We choose any differentiable curve
{θt}t≥0 on Θ with θ0 = θ and θ̇0 = ξ(θ). If we denote ρθt

= Tθt#p, then we have

(T#)∗ξ(θ) = ∂ρθt

∂t

∣∣
∣
t=0

. To compute ∂ρθt

∂t

∣∣
∣
t=0

, we consider for any φ ∈ C∞
0 (M):

∫
φ(y)

∂ρθt

∂t
(y)dy =

∂

∂t

(∫
φ(Tθt

(x))dp

)
=

∫
θ̇t

T
∂θTθt

(x)∇φ(Tθt
(x))dp

=
∫

θ̇T
t ∂θTθt

(T−1
θt

(x))∇φ(x) ρθt
(x) dx

=
∫

φ(x)
(
−∇ · (ρθt

∂θTθt
(T−1

θt
(x))T θ̇t)

)
dx

This weak formulation reveals that

(T#|θ)∗ξ(θ) =
∂ρθt

∂t

∣∣∣
t=0

= −∇ · (ρθ ∂θTθ(T−1
θ (x))T ξ(θ)) (7)

Now let us compute the metric tensor G. Since T# is isometric immersion from
Θ to P, the pullback of gW by T# gives G, i.e. (T#)∗gW = G. By definition of
pullback map, for any ξ ∈ TΘ and for any θ ∈ Θ, we have:

G(θ)(ξ(θ), ξ(θ)) = gW (ρθ)((T#|θ)∗ξ(θ), (T#|θ)∗ξ(θ)) (8)

To compute the right hand side of (8), recall (3), we need to solve for ϕ from:

∂ρθt

∂t

∣∣∣
t=0

= −∇ · (ρθ∇ϕ(x)) (9)

By (7), (9) is:

∇ · (ρθ∇ϕ(x)) = ∇ · (ρθ∂θTθ(T−1
θ (·))T ξ(θ)) (10)
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We can straightforwardly check that ϕ(x) = ΨT (x)ξ(θ) is the solution of (10).
Then G(θ) is computed as:

G(θ)(ξ, ξ) =
∫

|∇ϕ(y)|2 ρθ(y) dy =
∫

|∇ϕ(Tθ(x))|2 dp(x)

=
∫

|∇Ψ (Tθ(x))T ξ|2dp(x) = ξT

(∫
∇Ψ (Tθ(x))∇Ψ (Tθ(x))T dp(x)

)
ξ

Thus we can verify that:

G(θ) =
∫

∇Ψ (Tθ(x))∇Ψ (Tθ(x))T dp(x)

Generally speaking, the metric tensor G doesn’t have an explicit form when
d ≥ 2; but for d = 1, G has an explicit form and can be computed directly.

Corollary 1. When dimension d of M equals 1. And we further assume that:
ρθ > 0 on M and limx→±∞ ρθ(x) = 0. Then G(θ) has an explicit form:

G(θ) =
∫

∂θTθ(x)T ∂θTθ(x) dp(x). (11)

The following theorem ensures the positive definiteness of the metric tensor G:

Theorem 2. We follow the notations and conditions in Sects. 2.2 and 2.3. Then
G is Riemmanian metric on TΘ iff For each θ ∈ Θ, for any ξ ∈ TθΘ (ξ �= 0),
we can find x ∈ M such that ∇ · (ρθ ∂θTθ(T−1

θ (x)ξ) �= 0.

To keep our discussion concise, in the following sections, we will always assume
that G is positive definite on TΘ.
From now on, following [9,10], we call (Θ,G) Wasserstein statistical manifold.

2.3 Fokker-Planck Equation on Statistical Manifold

Recall the relative entropy functional F defined in (4), we consider F = F ◦T# :
Θ → R. Then:

F (θ) = F(ρθ) =
∫

V (x)ρθ(x) dx + β

∫
ρθ(x) log ρθ(x) dx. (12)

As in [1], the gradient flow of F on Wasserstein statistical manifold (Θ,G)
satisfies

θ̇ = −G(θ)−1∇θF (θ). (13)

We call (13) parametric Fokker-Planck equation. The ODE (13) as the Wasser-
stein gradient flow on parameter space (Θ,G) is closely related to Fokker-Planck
equation on probability submanifold PΘ. We have the following theorem, which
is a natural result derived from submanifold geometry:

Theorem 3. Suppose {θt}t≥0 solves (13). Then {ρθt
} is the gradient flow of F

on probability submanifold PΘ.
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3 Example on Fokker-Planck Equations with Quadratic
Potential

The solution of Fokker-Planck equation on statistical manifold (13) can serve as
an approximation to the solution of the original Eq. (1). However, in some special
cases, ρθt

exactly solves (1). In this section, we demonstrate such examples.
Let us consider Fokker-Planck equations with quadratic potentials whose

initial conditions are Gaussian, i.e.

V (x) =
1
2
(x − μ)T Σ−1(x − μ) and ρ0 ∼ N (μ0, Σ0). (14)

Consider parameter space Θ = (Γ, b) ⊂ R
m (m = d(d + 1)), where Γ is a d × d

invertible matrix with det(Γ ) > 0 and b ∈ R
d. We define the parametric map

as Tθ(x) = Γx + b. We choose the reference measure p = N (0, I). Here is the
lemma we have to use:

Lemma 1. Let F be the relative entropy defined in (4) and F defined in (12).
For θ ∈ Θ, If the vector function ∇

(
δF
δρ

)
◦ Tθ can be written as the linear

combination of {∂Tθ

∂θ1
, ..., ∂Tθ

∂θm
}, i.e. there exists ζ ∈ R

m, such that ∇
(

δF
δρ

)
◦

Tθ(x) = ∂θTθ(x)ζ. Then:

(1) ζ = G(θ)−1∇θF (θ), which is the Wasserstein gradient of F at θ.
(2) If we denote the gradient of F on P as gradF(ρθ) and the gradient of F on

the submanifold PΘ as gradF(ρθ)|PΘ
, then gradF(ρθ)|PΘ

= gradF(ρθ).

Proof. The detailed proof is provided in [8]. Here is an intuitive explana-
tion: ∇

(
δF
δρ

)
= ∇V + β∇ log ρθ is the real vector field that moves the par-

ticles in Fokker-Planck equation; and ∂θTθ(T−1
θ (·))θ̇ is the approximate vec-

tor field induced by the pushforward map Tθ. If such approximate is per-
fect with zero error, i.e. exits ζ such that ∇

(
δF
δρ

)
◦ Tθ(x) = ∂θTθ(x)ζ, then

ζ = θ̇ = G(θ)−1∇θF (θ) and the submanifold gradient agrees with entire mani-
fold gradient.

Now, let us come back to our example, we can compute

ρθ(x) = Tθ#p(x) =
f(T−1

θ (x))
|det(Γ )| =

f(Γ−1(x − b))
|det(Γ )| , f(x) =

exp(− 1
2 |x|2)

(2p)
d
2

.

Then we have:

∇
(

δF(ρθ)
δρ

)
◦ Tθ(x) = ∇(V + β log ρθ) ◦ Tθ(x) = Σ−1(Γx + b − μ) − βΓ−T x

is affine w.r.t. x.
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Notice that ∂Γij
Tθ(x) = (..0.. xj

i−th

..0..)T and ∂bi
Tθ = (..0.. 1

i−th
..0..)T . We can

verify that ζ = (Σ−1Γ−βΓ−T , Σ−1(b−μ)) solves ∇
(

δF(ρθ)
δρ

)
◦Tθ(x) = ∂θTθ(x)ζ.

By (1) of Lemma 1, ζ = G(θ)−1∇θF (θ). Thus ODE (13) for our example is:

Γ̇ = −Σ−1Γ + βΓ−T Γ0 =
√

Σ0 (15)

ḃ = Σ−1(μ − b) b0 = μ0 (16)

By (2) of Lemma 1, we know gradF(ρθ)|PΘ = gradF(ρθ) for all θ ∈ Θ. This
indicates that there is no local error for our approximation, one can verify that
the solution to the parametric Fokker-Planck equation also solves the original
equation.

In addition to previous results, we have the following corollary:

Corollary 2. The solution of Fokker-Planck equation (1) with condition (14) is
Gaussian distribution for all t > 0.

Proof. If we denote {Γt, bt} as the solutions to (15), (16), set θt = (Γt, bt), then
ρt = Tθt#p solves the Fokker Planck Equation (1) with conditions (14). Since
the pushforward of Gaussian distribution p by an affine transform Tθ is still a
Gaussian, we conclude that for any t > 0, the solution ρt = Tθt#p is always
Gaussian distribution. This is already a well known result about Fokker-Planck
equation. We reprove it under our framework.

4 Numerical Examples for 1D Fokker-Planck Equation

Since the Wasserstein metric tensor G has an explicit solution when dimension
d = 1, it is convenient to numerically compute ODE (13).

For example, we can choose a series of basis functions {ϕk}n
k=1. Each ϕk

can be chosen as a sinusoidal function or a piece-wise linear function defined
on a certain interval [−l, l]. It is also beneficial to choose orthogonal or near-
orthogonal basis functions because they will keep the metric tensor G far away
from ill-posedness. We set Tθ(x) =

∑m
k=1 θkϕk(x)2. Then according to (11), we

can compute G as

Gij(θ) = EX∼p

[
ϕi(X)ϕj(X)

]
1 ≤ i, j ≤ m

Recall that F (θ) =
∫

V (x)ρθ(x)dx+β
∫

ρθ(x) log ρθ(x)dx. The second part of F
is the entropy of ρθ, which can be computed by solving the following optimization
problem [4]:

∫
ρθ(x) log ρθ(x) dx = sup

h

{ ∫
h(x)ρθ(x) dx −

∫
eh(x)dx

}
+ 1 (17)

2 In application, carefully choosing Tθ which is not necessarily invertibile or smooth
can still provide valid results.
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We can solve (17) by parametrizing h. Suppose the optimal solution is h∗. Then
by envelope theorem, we know ∇θF (θ) can be computed as

∇θF (θ) = ∂θ

(∫
V (x)ρθ(x) dx + β

∫
h∗(x)ρθ(x) dx

)

= Ex∼p

[
∂θTθ(X)T ∇y(V (y) + βh∗(y))|y=Tθ(X))

]
(18)

Notice that both the metric tensor G and ∇θF (θ) are written in forms of expec-
tations, thus we can compute them by Monte Carlo simulations. And finally,
(13) can be computed by forward Euler method.

Our numerical results are always demonstrated by sample points: For each
time node t, we sample points {X1, ...,XN} from p, then {Tθt

(X1), ..., Tθt
(XN )}

are our numerical samples from distribution ρt which solves the Fokker-Planck
equation.

Here are several numerical results based on our method. We exhibit them in
the form of histograms. Consider the potential V (x) = (x+1)2(x−1)2. Suppose
the initial distribution is ρ0 = N (0, I). Figure 1 contains histograms of ρt which
solves ∂ρ

∂t = ∇ · (ρ∇V ) at different time nodes; we know ρt converges to δ−1+δ+1
2

Fig. 1. Histograms of ρt solving ∂ρ
∂t

= ∇ · (ρ∇V )

Fig. 2. Histograms of ρt solving ∂ρ
∂t

= ∇ · (ρ∇V ) + 1
4
Δρ
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as t → ∞. Here δa is the Dirac distribution concentrated on point a. Figure 2
contains histograms of ρt which solves ∂ρ

∂t = ∇ · (ρ∇V ) + 1
4Δρ at different time

nodes, we know ρt will converge to Gibbs distribution ρ∗ = 1
Z exp(−4(x+1)2(x−

1)2), with Z being a normalizing constant, as t → ∞. The density function of
ρ∗ is exhibited in Fig. 2.

5 Discussion

We presented a new approach for approximating Fokker-Planck equations
by parameterized push-forward mapping functions. Compared to the classical
moment method and MCMC method, we propose a systematic way for obtain-
ing a finite dimensional ODE on parameter space. The ODE represents the
evolution of statistical information conveyed in the original Fokker-Planck equa-
tion. In the future, we will study its geometric and statistical properties, and
derive practical numerical methods for applications in scientific computing and
machine learning. To be specific, in scientific computing, our techniques can be
used to provide numerical solutions (samples) to those evolution PDEs that can
be treated as Wasserstein gradient flows of certain functions defined on proba-
bility manifold; in area of machine learning, we wish to create efficient sampling
methods based on our computational tools designed for Wasserstein gradients.
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N000141310408.
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