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Abstract. We propose an innovative algorithm that iteratively evolves a
particle system to approximate the sample-wised Optimal Transport plan
for given continuous probability densities. Our algorithm is proposed via
the gradient flow of certain functional derived from the Entropy Trans-
port Problem constrained on probability space, which can be understood
as a relaxed Optimal Transport problem. We realize our computation
by designing and evolving the corresponding interacting particle system.
We present theoretical analysis as well as numerical verifications to our
method.
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1 Introduction

Optimal transport (OT) provides powerful tools for comparing probability mea-
sures in various types. The optimal Transport problem was initially formalized
by Gaspard Monge [19] and later generalized by Leonid Kantorovich [12]. Later
a series of significant contribution in transportation theory leads to deep connec-
tions with more mathematical branches including partial differential equations,
geometry, probability theory and statistics [5,12]. Researchers in applied science
fields also discover the importance of Optimal Transport. In spite of elegant the-
oretical results, generally computing Wasserstein distance is not an easy task,
especially for the continuous case.

In this paper, instead of solving the standard Optimal Transport (OT) prob-
lem, we start with the so-called Entropy Transport (ET) problem, which can
be treated as a relaxed OT problem with soft marginal constraints. Recently,
the importance of Entropy Transport problem has drawn researchers’ attention
due to its rich theoretical properties [16]. By restricting ET problem to prob-
ability manifold and formulating the gradient flow of the target functional of
the Entropy Transport problem, we derive a time-evolution Partial Differential
Equation (PDE) that can be then realized by evolving an interacting particle
system via Kernel Density Estimation techniques [22].
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Our method directly computes for the sample approximation of the optimal
coupling to the OT problem between two density functions. This is very different
from traditional methods like Linear Programming [20,24,27], Sinkhorn itera-
tion [8], Monge-Ampeére Equation [4] or dynamical scheme [3,15,23]; or methods
involving neural network optimizations [13,18,25].

Our main contribution is to analyze the theoretical properties of the Entropy
Transport problem constrained on probability space and derive its Wasserstein
gradient flow. To be specific, we study the existence and uniqueness of the solu-
tion to ET problem and further study its I'-convergence property to the classical
OT problem. Then based on the gradient flow we derive, we propose an innova-
tive particle-evolving algorithm for obtaining the sample approximation of the
optimal transport plan. Our method can deal with optimal transport problem
between two known densities. As far as we know, despite the classical discretiza-
tion methods [3,4,15] there is no scalable way to solve this type of problem. We
also demonstrate the efficiency of our method by numerical experiments.

2 Constrained Entropy Transport as a Regularized
Optimal Transport Problem

2.1 Optimal Transport Problem and Its Relaxation

In our research, we will mainly focus on Euclidean Space R%. We denote P(E)
as the probability space defined on the given measurable set E. The Optimal
Transport problem is usually formulated as

inf // c(z,y) dy(z,y). (1)
7679 (RYxR?),

=H,Y2=V

Here p,v € P(R?), we denote v; as the marginal distribution of v w.r.t. com-
ponent x and ~» as the marginal distribution w.r.t. y. We call the optimizer of
(1)! as Optimal Transport plan and we denote it as yor.

We can also reformulate (1) as min,cpgaxra) {€ (vl v)} where

o= [ ()t ()

Here ¢ is defined as ¢(1) = 0 and «(s) = +oo when s # 1. We now derive a
relaxed version of (1) by replacing ¢(-) with AF(-), where A > 0 is a tunable
positive parameter and F' is a smooth convex function with F(1) = 0 and 1
is the unique minimizer. In our research, we mainly focus on F(s) = slogs —
s+ 1 [16]. It is worth mentioning that after such relaxation, the constraint
term [ F( ‘Zj du is usually called Kullback-Leibler (KL) divergence [14] and is
denoted as Dxr,(71||p)-

! When p, v are absolute continuous with respect to the Lebesgue measure on R?, the
optimizer of (1) is guaranteed to be unique.
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From now on, we should focus on the following functional involving cost
c(x,y) = h(x—y) with h as a strictly convex function, and enforcing the marginal
constraints by using KL-divergence:

exsablin) = [[ | elw) i) + AD(ull) + AP (all): )

2.2 Constrained Entropy Transport Problem and Its Properties

For the following discussions, we always assume that y, v € P(R?) are absolute
continuous with respect to the Lebesgue measure on R?. We now focus on
solving the following problem

min & 1 . 4
veP(Rlded') tEax(rl )} @
A similar problem
min & I 5
»yeM(Rlded) Eaxc(rln )} ©)

has been studied in [16] with P(R? x R?) being replaced by the space of pos-
itive measures M(R? x R?) and is named as Entropy Transport problem
therein. In our case, since we restrict v to probability space, we call (4) con-
strained Entropy Transport problem and call £4 k1, the Entropy Transport
functional.

Let us denote Eyin = inf,cp(raxra){€axL(v|p;v)}. The following theorem
shows the existence of the optimal solution to problem (4). It also describes the
relationship between the solution to the constrained ET problem (4) and the
solution to the general ET problem (5):

Theorem 1. Suppose 7 is the solutiongto original Entropy Transport problem

(5). Then we have ¥ = Z~, here Z = e~ 24" and v € P(R? x RY) is the solution
to constrained Entropy Transport problem (4).

The proof is provided in [17]. The following corollary guarantees the uniqueness
of optimal solution to (4):

Corollary 1. The constrained ET problem (4) admits a unique optimal solution.

Despite the discussions on the constrained problem (4) with fixed A, we also
establish asymptotic results for (4) with quadratic cost c(z,y) = |z — y|* as
A — +o00. For the rest of this section, we define:

P2(E) = {fy‘ vy € P(E),y< £, /E|x\2dfy(m) < —l—oo} E measurable.

Here we denote .Z? as the Lebesgue measure on R
Let us now consider P, (R? x R?) and assume it is equipped with the topology
of weak convergence. We are able to establish the following I'-convergence result.
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Theorem 2. Suppose c(z,y) = |x—y|?, let us assume p, v € Po(RY), p,v < L4
and both u,v satisfy the Logarithmic Sobolev inequality with constants K,,, K, >
0. Let {A,} be a positive increasing sequence with lim,, o, A, = +o0.

We consider the sequence of functionals {Ea, xr(-|p,v)}. Recall the func-
tional E,(:|u,v) defined in (2). Then {Ea, kL(-|1,v)} I'- converges to &,(-|u,v)
on Pa(RY x RY).

Furthermore, (4) with functional €4, k1. (-|p, v) admits a unique optimal solu-
tion, let us denote it as v,. At the same time, the Optimal Transport prob-
lem (1) also admits a unique optimal solution, we denote it as yor. Then
lim,, oo Yn = Yor in Po(R? x RY).

Remark 1. We say a distribution p satisfies the Log-Sobolev inequality with
K > 0 if for any fi < p, Dxr(jiln) < 5%=Z(fi|p) always holds. Here Z(fi|y) =

SV 10g (42) I dii o

Theorem 2 justifies the asymptotic convergence property of the approximation
solutions {~v, } to the desired Optimal Transport plan yo7. The proof of Theorem
2 is provided in [17].

3 Wasserstein Gradient Flow Approach for Solving the
Regularized Problem

3.1 Wasserstein Gradient Flow

There are already numerous references [2,11,21] regarding Wasserstein gra-
dient flows of functionals defined on the Wasserstein manifold-like structure
(Pa(R%), g"). The Wasserstein manifold-like structure is the manifold Py(R?)
equipped with a special metric ¢g"' compatible to the 2-Wasserstein distance
[2,26]. Under this setting, the Wasserstein gradient flow of a certain functional
F can thus be formulated as:

Iy
aTt = —grady F () (6)

3.2 Wasserstein Gradient Flow of Entropy Transport Functional

We now come back to our constrained Entropy Transport problem (4). There
are mainly two reasons why we choose to compute the Wasserstein gradient flow
of functional €4 kr,(+|p, v):

— Computing the Wasserstein gradient flow is equivalent to applying gradient
descent method to determine the minimizer of the ET functional (3);

— In most of the cases, Wasserstein gradient flows can be viewed as a time
evolution PDE describing the density evolution of a stochastic process. As a
result, once we derived the gradient flow, there will be a natural particle ver-
sion associated to the gradient flow, which makes the computation of gradient
flow tractable.
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Now let us compute the Wasserstein gradient flow of €4 k1,(+|y, v):

il

9 —grady EakL (el i, V), Yele=o = Y0 (7)

To keep our notations concise, we denote p(-,t) = dé%, 01 = diiéfd, 02 = Jgas
we can show that the previous Eq. (7) can be written as:

dp p1(z,t) p2(y, 1)

— =V -(pViclz,y) + Alog(———=) + Alo 8

o =V (p Vlclw) + Alog T 4 atog 2Dy )
Here p1(-,t) = [ p(-,y,t) dy and ps(-,t) = [ p(z,-,t) dz are density functions of

margmals of Ve

3.3 Relating the Wasserstein Gradient Flow to a Particle System

Let us treat (8) as certain kind of continuity equation, i.e. we treat p(-,t) as
the density of the time-evolving random particles. Then the vector field that

drives the random particles at time ¢ should be —V(c(z,y) + Alog (pl(?;g)) +

Alog (”(y g))) This helps us design the following dynamics {(X¢, ¥;)}i>o0: (here

02(
X, denotes the time derivative dﬁt)

Xt = —V.c(Xy,Y:) + A(Vlog 01(Xt) — Vog p1 (X3, 1)); )
Vi = =Vye(Xe, Yy) + A(Vlog 02(Y:) — Vlog pa(Y3, 1));

Here p1(-,t) denotes the probability density of random variable X; and pa(-,t)
denotes the density of ;. If we assume (9) is well-posed, then the density p:(z,y)
of (X4, Y;) solves the PDE (8).

When we take a closer look at (9), the movement of the particle (X;,Y;)
at certain time ¢ depends on the probability density p(X,Y:,t), which can be
approximated by the distribution of the surrounding particles near (X3, Y;). Gen-
erally speaking, we plan to evolve (9) as a particle aggregation model in order to
converge to a sample-wised approximation of the Optimal Transport plan yor
for OT problem (1).

4 Algorithmic Development

To simulate the stochastic process (9) with the Euler scheme, we apply the
Kernel Density Estimation [22] here to approximate the gradient log function
Vlog p(z) by convolving it with kernel K (x, )%

(VoK) * p(z)
K« p(x)
2 In this paper, we choose the Radial Basis Function (RBF) as the kernel: K(z,§) =
|”€ 5\
exp(— ).

Viog p(x) =~ Vieg(K = p)(x) = (10)
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Algorithm 1. Random Batch Particle Evolution Algorithm

Input: The density functions of the marginals g1, 02, timestep At, total number of
iterations 7', parameters of the chosen kernel K
Initialize: The initial locations of all particles X;(0) and Y;(0) wherei = 1,2,--- ,n,
fort=1,2,---,T do

Shuffle the particles and divide them into m batches: C1,--- ,Cm,

for each batch C; do

Update the location of each particle (X;,Y;) (¢ € Cq) according to (11)

end for
end for
Output A sample approximation of the optimal coupling: X;(T),Y;(T) for i =
1,2,---,n

Here K * p(z) = [ K(x,&)p(&)d¢, (VoK) x p(z) = [V K(x,&)p(§)dE®. Such
technique is also known as blobing method, which was first studied in [6] and
has already been applied to Bayesian sampling [7]. With the blobing method,
Vlog p(x) is evaluated based on the locations of the particles:

EeyVoK(2,8) 3, VoK (2, &)
EngK(I,g) Zivzl K(I’,fk)

Now we are able to simulate (9) with the following interacting particle system
involving N particles {(X;,Y;)}i=1,... n. For the i-th particle, we have:

&, én,iid. ~p

Xi(t) = Ve Xu(0). V(1)) — A (vvl () + 2t VoK (X “)’X’““”>

Sl K(Xi(1), X(t))

S, VoK (Yi(t), m(t)))
)

(11)

Yopy K(Yi(), Ye(t)

Here we denote Vi = —logp;, Vo = —logps. Since we only need the gra-
dients of V7, V5 | our algorithm can deal with unnormalized probability mea-
sures. We numerically verify that when ¢ — oo, the empirical distribution
1 N . . . . .

N Doim1 0(x,(#),v;(¢)) Will converge to the optimal distribution v.gpr that solves
(4) with sufficient large N and A, while the rigorous proof is reserved for our
future work. The algorithm scheme is summarized in the algorithm 1.

Yi(t) = =Vye(Xi(1), Yi(t) — A <VV2(Yi(t)) +

Remark 2. Inspired by [10], we apply the Random Batch Methods (RBM) here
to reduce the computational effort required to approximate V log p(x) with blob-
ing method: We divide all N particles into m batches equally, and we only con-
sider the particles in the same batch as the particle X; when we evaluate the

V log p(X;). Now in each time step, the computational cost is reduced from O(n?)
to O(n?/m).

3 Notice that we always use V,K to denote the partial derivative of K with respect
to the first components.
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5 Numerical Experiments

In this section, we test our algorithm on several toy examples.

Gaussian. We first apply the algorithm to compute the sample approxima-
tion of the Optimal Transport plan between two 1D Gaussian distributions
N(=4,1),N(6,1)*. We set A = 200, At = 0.001,c(z,y) = |z — y|* and run it
with 1000 particles (X;,Y;)’s for 1000 iterations. We initialize the particles by
drawing 1000 i.i.d. sample points from N (—20,4) as X;’s and 1000 i.i.d. sample
points from N'(20,2) as Y;’s. The empirical results are shown in Fig. 1 and Fig. 2.

Oth iteration 5th iteration 10th iteration

0.4 A A 0.4 n »
i I
1! hy

0.2 i ,' ! 0.2

. | \ .

1 L
L

0.0 e 0.0

-10 0 10 -10 -5 0 5 10
20th iteration 25th iteration

0.49 0.49

N /\ //\ N

0.0 e " 0.0
50 5 10

Fig. 1. Marginal plot for 1D Gaussian example. The red and black dashed lines cor-

respond to two marginal distribution respectively and the solid blue and green lines

are the kernel estimated density functions of particles at certain iterations. After first

25 iterations, the particles have matched the marginal distributions very well. (Color
figure online)

Oth iteration 500th iteration 1000th iteration

P o 10.04 10.0
201§ < :

—20- 251 " 2.5
-30 -20 -10 8 -6 -4 -2 0 -8 -6 -4 -2 0

Fig. 2. The sample approximation for 1D Gaussian example. The orange dash line
corresponds to the Optimal Transport map T'(x) = = 4 10. (Color figure online)

Gaussian Mixture. Then we apply the algorithm to two 1D Gaussian mixture
01 = tN(-1,1) + IN(1,1), 02 = $N(=2,1) + $N(2,1). For experiment, we set
A = 60, At = 0.0004, ¢(x,y) = |z—y|? and run it with 1000 particles (X;, Y;)’s for
5000 iterations. We initialize the particles by drawing 2000 i.i.d. sample points
from N(0,2) as X;’s and Y;’s. Figure3 gives a visualization of the marginal
distributions and the Optimal Transport map.

* Here N (i, 0%) denotes the Gaussian distribution with mean value p and variace 0.
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Fig. 3. 1D Gaussian mixture. Left. Marginal plot. The dash lines correspond to two
marginal distributions. The histogram indicates the distribution of particles after 5000
iterations. Right. Sample approximation for the optimal coupling.

Wasserstein Barycenters. Our framework can be easily extended to solve the
Wasserstein barycenter problem [1,9]

NW2 (i, 12
Herg;&dz Z (1, i) (12)

where \; > 0 are the weights. Similar to our previous treatment on OT problem,
we can relax the marginal constraints in (12) and consider

m
(]R(erl)d)/R( nH)dZ)‘ & — ;| dy(z, @1, ) + Y A D (v5lly) (13)

yEP j=1

Then we can apply similar particle-evolving method to compute for problem
(13), which can be treated as an approximation of the original barycenter prob-
lem (12). Here is an illustrative example: Given two Gaussian distributions
p1 = N(=10,1), pa = N(10,1), and cost function c(x,z1,72) = wi|z — 21]% +
wal|x — m2|2, we can compute sample approximation of the barycenter p of p1, ps.
We try different weights [wy,ws] = [0.25,0.75],[0.5,0.5],[0.75,0.25] to test our
algorithm. The experimental results are shown in Fig.4. The distribution of
the particles corresponding to the barycenter random variable X, converges to
N (5,1),N(0,1),N(—5,1) successfully after 2000 iterations.

041 0.41 0.41

i N j\ j\ N ]\]\ A

0.0 T T T 0.0 T T T 0.0 T T T
-10 0 10 -10 0 10 -10 0 10

Fig. 4. Density plots for 1D Wasserstein barycenter example. The red dashed lines corre-
spond to two marginal distributions respectively and the solid green lines are the kernel
estimated density functions of the particles X;’s and X2’s. The solid blue line represents
the kernel estimated density function of the particles corresponding to the barycenter.
[wl,w2] = [0.25,0.75], 0.5, 0.5], [0.75, 0.25] from left to right. (Color figure online)
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6 Conclusion

We propose the constrained Entropy Transport problem (4) and study some of
its theoretical properties. We discover that the optimal distribution of (4) can
be treated as an approximation to the optimal plan of the Optimal Transport
problem (1) in the sense of I'-convergence. We also construct the Wasserstein
gradient flow of the Entropy Transport functional. Based on that, we propose
a novel algorithm that computes for the sample-wised optimal transport plan
by evolving an interacting particle system. We demonstrate the effectiveness
of our method by several illustrative examples. More theoretical analysis and
numerical experiments on higher dimensional cases including comparisons with
other methods will be included in our future work.
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