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Abstract. We propose a supervised learning scheme for the first order Hamilton–Jacobi PDEs in4
high dimensions. The scheme is designed by using the geometric structure of Wasserstein Hamiltonian5
flows via a density coupling strategy. It is equivalently posed as a regression problem using the6
Bregman divergence, which provides the loss function in learning while the data is generated through7
the particle formulation of Wasserstein Hamiltonian flow. We prove a posterior estimate on L18
residual of the proposed scheme based on the coupling density. Furthermore, the proposed scheme9
can be used to describe the behaviors of Hamilton–Jacobi PDEs beyond the singularity formations10
on the support of coupling density. Several numerical examples with different Hamiltonians are11
provided to support our findings.12
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1. Introduction. In this paper, we are concerned with solving the following16
Hamilton–Jacobi equation numerically,17

(1.1)
∂u(x, t)

∂t
+H(x,∇u(x, t)) = 0, u(x, 0) = g(x),18

where t ∈ [0, T ], x ∈ Rd with d ∈ N+, and the Hamiltonian H is convex with respect19
to the second variable. Hamilton-Jacobi partial differential equations (HJ PDEs)20
(1.1) arise in many areas of applications, including the calculus of variations, control21
theory, and differential games [1]. However, obtaining their analytical solutions, if22
at all possible, is often challenging, especially in high dimensions. As indispensable23
tools, numerical methods such as finite difference [12, 34], fast sweeping [41] and level24
set methods [25, 23] have been developed and refined over the years to approximate25
the solutions and predict their longtime dynamics. Those traditional algorithms in-26
volve discretizing the equation on grids and approximating the derivatives by using27
either finite difference or finite element techniques, and thus their applicability is lim-28
ited by the so-called curse of dimensionality, namely the computational cost grows29
exponentially with respect to the problem dimension d [4].30

In recent years, several strategies are proposed to mitigate the challenges caused31
by the curse of dimensionality when solving HJ PDEs numerically1, including the32
optimization method [16, 10], sparse grids [6], neural networks [15, 21], etc. For33
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instance, the authors in [18] proposed a probabilistic method based on the 2nd-order34
backward stochastic differential equation (SDE) to solve second-order HJ equations.35
A deep learning approach was then developed in [21] for Hamilton-Jacobi-Bellman36
(HJB) equations with the gradient acting as the policy function. The work [16] used37
the Hopf-Lax formula and split Bregman algorithm to solve HJ equation. For general38
state-dependent HJ equations, we refer to [9] for the numerical treatments via the39
coordinate descent algorithm and a generalized version of Hopf-Lax formula. In [35],40
the authors focused on the stationary HJ equation on bounded region via a special41
kind of Hopf-Lax formula and neural networks. In [15], the authors designed an42
architecture of deep neural network by imitating the structure of Hopf-Lax formula43
and then optimized its network parameters to acquire the solution of HJ equation. In44
[33], the authors focused on solving the high-dimensional HJB equation with quadratic45
kinetic energy. They reformulated the equation as an equivalent variational problem46
aiming to minimize discrepancies between the path measures of the controlled diffusion47
processes and the uncontrolled diffusion processes. In [31, 32], the authors proposed a48
causality-free algorithm to deal with the HJB equation originating from the optimal49
feedback control. The numerical solution is computed via minimizing the L2 loss50
between the neural network approximation and the benchmark solution obtained by51
computing the optimal trajectories on randomly generated data points. In [30], by52
coupling with a continuity equation, the authors proposed a saddle point problem53
regarding the HJ equation, which is further solved via the primal-dual hybrid gradient54
algorithm.55

In this paper, we introduce an alternative supervised learning method to solve56
HJ PDEs in high dimensions. Our study stems from some recent advancements in57
Wasserstein Hamiltonian flow (WHF) [8], which describes a family of PDEs defined58
on the Wasserstein manifold, the probability density set equipped with the optimal59
transport (OT) metric. Examples of WHFs include the Wasserstein geodesic [13],60
Schrödinger equation [14], and mean field control [28]. A typical WHF consists of a61
transport (or Fokker-Planck) equation and a HJ equation. Coupling two equations62
together, they form a geometric flow with symplectic and Hamiltonian structures on63
the Wasserstein manifold (we refer to section 2 for more details). This inspires us to64
design a numerical scheme that can preserve the geometric properties of the original65
equation and mitigate the curse of dimensionality at the same time.66

To achieve this goal, we must confront several difficulties. First, the classical67
structure-preserving methods are often implicit in time and they become intractable68
when the spatial dimension grows high. Second, it is well-known that the character-69
istics of HJ equation may intersects and its classical solution may only exist up to a70
finite time. Third, the state-of-the-art numerical methods mainly focus on solving the71
viscosity solution, and may not capture the geometric structure on the Wasserstein72
density manifold. Last but not least, in some applications like the geometric optics,73
seismic waves and semi-classical limits of quantum dynamics, one may be more in-74
terested in other physical solutions, like the multi-valued solution and its statistical75
information [25].76

To overcome these challenges, we leverage the geometric structure of WHF and the77
approximation power of deep neural networks (DNNs) to design a supervised learning78
procedure. More precisely, we propose an approach consisting of the following steps.79

1. Coupling the given HJ equation with a continuity equation that transports80
a probability density function to form a WHF on Wasserstein manifold. The81
transport velocity field is provided by the solution of the HJ equation. Ac-82
cording to the theory of WHF, a particle version corresponding to the coupled83
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system can be constructed leading to a system of Hamiltonian ordinary dif-84
ferential equations (ODEs).85

2. Formulating a regression problem based on the Bregmann divergence follow-86
ing the OT theory. Its critical point satisfies the coupled system of WHF.87
This regression or its equivalent least squares expression are then used as the88
loss function in the learning process.89

3. Generating the training data ({Xt}, {P t}) by applying a symplectic integra-90
tor to the particle version of WHF, which is the Hamiltonian ODE system91
constructed in the first step.92

4. Learning the solution HJ equation by reducing the loss function evaluated on93
the training data ({Xt}, {P t}) via minimization algorithms such as Adam94
[26].95

Details on the first and second steps will be given in section 2, and about the third96
and fourth steps in section 3.97

The proposed method eases the computation burden of high dimensional HJ equa-98
tion from three different aspects. (i) The loss function is expressed in term of expec-99
tation, which can be evaluated by employing the Monte Carlo integral methods and100
auto differentiation in DNNs. This allows us to carry out the calculation in higher101
dimensions without limiting the number of unknowns as the classical finite difference102
and finite element methods do. (ii) The training data ({Xt}, {P t}) is generated by103
solving ODEs, which can be scaled up to higher dimensions. (iii) The density func-104
tion can be selected (supervised) so that its support covers the region of interest.105
This provides a mechanism to only generate training data concentrated at the place106
where the solution of HJ equation is needed, and it is different from many existing107
DNN based methods for high dimensional PDEs, like physics-informed neural net-108
work (PINN) [36], deep-Ritz [17], or weak adversarial network [43], in which samples109
are usually taken everywhere in the domain. An added benefit is that the training110
data is computed by symplectic structure preserving schemes so that better geometric111
properties of the HJ equation can be retained in the learning procedure.112

More importantly, we would like to advocate two new features of the proposed113
method for theoretical analysis. The coupling strategy enables us to develop a novel114
error bound using the residual estimate with respect to the density controlling where115
and how the training data is sampled. In other words, the error estimate may vary116
depending on the chosen density. This is different from the traditional error estimates,117
and it is more suitable for machine learning-based methods in which random samples118
are used for the training. We establish the rigorous error estimate for the proposed119
method in section 3. In a special case when the initial density is selected as the uniform120
distribution, the proposed method generates training data using ODEs that resemble121
the bi-characteristic formulation. According to the uniqueness theorem of ODEs, the122
training data can be generated beyond the blow-up time that the classic solution123
of HJ equation doesn’t exist anymore, for example, the characteristics intersect. In124
this sense, the supervised learning method may compute the solution of HJ equation125
after the blow-up time. We show several such examples along with other numerical126
experiments in section 4.127

Although our proposed approach shares some similarities with the supervised128
learning formulation presented in [31, 32], they have major differences too. The129
algorithm in [31, 32] is designed for the “backward” HJ equations originated from130
control with desirable terminal conditions, and the training data is generated by solv-131
ing boundary value problems following the Pontryagin maximal principle. While our132
scheme is proposed for the “forward” HJ equation with given initial condition, and the133
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training data is created by solving initial value Hamiltonian ODEs following particle134
formulation of WHF. More importantly, our derivation is conducted on the Wasser-135
stein manifold, and it reveals the connection between the supervised learning scheme136
and a sup-inf problem originated from the mean-field control, which further provides137
a formulation for error analysis. It is also worth mentioning that the coupling idea138
is also used in [30], in which the solution of HJ equation is reformulated as a saddle139
point problem and further solved by the primal-dual hybrid gradient algorithm. In our140
scheme, we introduce a swarm of particles governed by the Hamiltonian ODEs corre-141
sponding to the WHF, and their trajectories are used as the data in the supervised142
learning. This leads to a minimization problem whose loss function can be computed143
by the Monte–Carlo method, and it is scalable to high-dimensional problems.144

2. Density coupling strategy. In this section, we introduce two key ingredi-145
ents for designing the supervised learning scheme of HJ equations. One is coupling146
the HJ equation with a transport equation for the probability density to form a WHF147
on the Wesserstein manifold and its particle formulation. Another is connecting the148
coupled system to the critical point of a regression problem via the Bregman diver-149
gence.150

2.1. Coupled Wasserstein Hamiltonian flow. In this part, we introduce the151
density coupling strategy for (1.1). To explain it clearly, let us assume that the152
Hamiltonian H : (x, p) 7→ H(x, p) belongs to C2(Rd × Rd) and being strictly convex153
with respect to the second variable p for arbitrary fixed first variable x.154

Suppose that the solution u of (1.1) exists and is smooth in time and space. Con-
sider a random particle system {Xt(ω)}t∈[0,T ],ω∈Ω defined on a complete probability
space (Ω,F , P ), satisfying the following ODE

Ẋt = ∇pH(Xt,∇xu(Xt, t)),

where the initial value X0 obeys the probability distribution with the density function155
ρ0 (denote X0 ∼ ρ0 for simplicity). Then the probability density function ρ(·, t) of156
Xt satisfies157

∂tρ(x, t) +∇ · (ρ(x, t)∇pH(x,∇u(x, t))) = 0, ρ(·, 0) = ρ0,(2.1)158

which is a transport (continuity) equation. Let us consider the dynamics of the159
momentum defined by P t(ω) = ∇xu(Xt(ω), t). By taking the time derivative of P t,160
we get161
(2.2)

Ṗ t =
∂

∂t
∇xu(Xt, t) +∇2

xu(Xt, t)Ẋt =
∂

∂t
∇xu(Xt, t) +∇2

xu(Xt, t)∇pH(Xt,∇xu(Xt, t)),162

where ∇2
xu(x, t) is the Hessian matrix of u(x, t). If we differentiate (1.1) on both sides163

with respect to x, we have164
(2.3)
∂

∂t
∇xu(x, t) +∇xH(x,∇u(x, t)) +∇2

xu(x, t)∇pH(x,∇xu(x, t)) = 0, ∇xu(·, 0) = ∇g(x).165

By setting x = Xt in (2.3) and substituting back into (2.2), we obtain that

Ṗ t = −∇xH(Xt,∇xu(Xt, t)) = −∇xH(Xt,P t).

To sum up, the coupled time-evolving probability density ρ(·, t) can be viewed as166
the probability density of the random particle Xt satisfying the Hamiltonian system167

(2.4)

{
Ẋt = ∇pH(Xt,P t), X0 ∼ ρ0,
Ṗ t = −∇xH(Xt,P t), P 0 = ∇g(X0).

168
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Meanwhile, this density coupling strategy is related to the WHF introduced in [8].169
More precisely, following the derivation provided in [14], we obtain a coupled system170
of PDEs corresponding to the particle system (2.4),171

∂tρ(x, t) +∇ · (ρ(x, t)∇pH(x,∇û(x, t))) = 0, ρ(·, 0) = ρ0;(2.5)172

(∂tû(x, t) +H(x,∇û(x, t)))ρ(x, t) = 0, û(·, 0) = g(·),(2.6)173

where û(x, t) = u(x, t) + c(t) for any arbitrary c(·) ∈ C1([0, T ]). When ρ(·, t) > 0, t ∈174
[0, T ], (2.5)-(2.6) becomes a WHF. In particular, when H(x, p) = |p|2, the coupled175
system (2.5)-(2.6) is the Wasserstein geodesic equation [42], which is the critical point176
of the Benamou-Brenier formula defining the OT distance on Wasserstein manifold177
[5].178

This approach of coupling offers additional freedom in choosing the initial den-179
sity ρ0 which ultimately controls the support of the coupled density Spt(ρ(·, t)), hence180
where and how the samples ({Xt}, {P t}) are drawn. At the same time, the Hamilton-181
ian system (2.4) and Wasserstein Hamiltonian system (2.5)-(2.6) preserve the corre-182
sponding symplectic and Hamiltonian structures. As a by-product, solving (2.5)-(2.6)183
on Spt(ρ(·, t)), can recover the solution of original Hamiltonian–Jacobi equation (1.1)184
up to a spatial constant function. It should be noticed that the solution solved by185
(2.5)-(2.6) is consistent with the classical solution of (2.6) when T < T∗ with T∗ being186
the first time that (2.6) develops a singularity. On the other hand, the Hamiltonian187
system (2.4) is always well-posed even if the PDE (2.6) does not admit classical solu-188
tions. This inspires us to design a new way to learn the solution of (1.1) even beyond189
the singularity.190

2.2. Regression problem via Bregman divergence. To facilitate the learn-191
ing process, we propose a minimization problem whose minimizer coincides with the192
solution of (1.1) up to a spatial constant function. A key observation as reported in193
[5, 42, 2, 8] and many more references therein indicates that if (2.5) and (2.6) admit194
the classical solution ρ, û on [0, T ], then ρ, û can be treated as the critical point of195
sup-inf problem given as196

(2.7) sup
ψ∈C1

inf
ρ̃∈C1

{Jρ0,ρT ,T (ρ̃, ψ)},197

where198

Jρ0,ρb,T (ρ̃, ψ) =

∫ T

0

∫
Rd

−(∂tψ(x, t) +H(x,∇ψ(x, t)))ρ̃(x, t) dxdt

+

∫
Rd

ψ(x, T )ρT (x) dx−
∫
Rd

ψ(x, 0)ρ0(x) dx.

(2.8)199

This formulation originates from the optimal transport associated with the initial200
density ρ0 = ρ(·, 0) and target ρT = ρ(·, T ). Here we use ρ̃ as variable of the functional201
so as to distinguish it from the solution ρ to the continuity equation (2.5).202

Consequently, we can solve (2.7) instead of directly dealing with the PDE system203
(2.5) and (2.6). We recall that the optimal density ρ̃ of (2.7) is exactly the classical204
solution in (2.5). This suggests that (2.7) can be rewrite as the following optimization205
only associated with the variable ψ if we directly replace ρ̃ in (2.8) by the optimal206
density ρ,207

(2.9) sup
ψ∈Ψ
{Lρ0,g,T (ψ)},208
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where209

Lρ0,g,T (ψ) =

∫ T

0

∫
Rd

− (∂tψ(x, t) +H(x,∇ψ(x, t))) ρt(x) dxdt210

+

∫
Rd

ψ(x, T )ρT (x) dx−
∫
Rd

ψ(x, 0)ρ0(x) dx.(2.10)211

We want to point out that in the standard OT formulation, the terminal density212
ρT is given independently. This is different in the coupled system considered here.213
Since ρ(x, t) is the probability density of Xt given by the Hamiltonian system (2.4)214
on [0, T ], which is uniquely determined by the initial conditions ρ0 and g. It implies215
that ρT = ρ(x, T ) is also determined by ρ0 and g. For this reason, we use notation216
Lρ0,g,T (ψ) in (2.10) to emphasize the dependence on g. It can be checked that217
Lρ0,g,T (ψ+c) = Lρ0,g,T (ψ) for any continuous in time and constant in space function218
c ∈ C1([0, T ]×Rd). Thus it suffices to consider (2.10) over the equivalent class [ψ] of219
ψ ∈ C1([0, T ]×Rd) up to a spatial constant function. We denote this set of equivalent220
class by Ψ. In addition, if we denote µt as the joint probability distribution of (Xt,P t)221
solved from the Hamiltonian system (2.4) for 0 ≤ t ≤ T , ρ(·, t) is the density of the222
X-marginal distribution of µt. To further simplify the expression of (2.10), we use223
the concept of Bregman divergence.224

Definition 2.1 (Bregman divergence [7]). Suppose f ∈ C1(Rd) is a strict convex
function. We define the Bregman divergence Df (· : ·) : Rd × Rd → R≥0 induced by f
as

Df (q1 : q2) = f(q1)− f(q2)−∇f(q2) · (q1 − q2).

It is known that the Bregman divergence is positive and Df (q1 : q2) = 0 if and only if225
q1 = q2. Denote H∗ as the Legendre Transform of the given Hamiltonian H(x, p) with226
respect to p, i.e., H∗(x, v) ≜ supp∈Rd{v · p − H(x, p)} for any fixed x ∈ Rd, v ∈ Rd.227

Since H ∈ C1(R2d) is strictly convex with respect to p for arbitrary x, H∗(x, v) is also228
strictly convex with respect to v. And both ∇pH(x, ·) and ∇vH∗(x, ·) are invertible229
for arbitrary x ∈ Rd.230

Lemma 2.1. Suppose f ∈ C2(Rd) is α-strongly convex and L-strongly smooth
(α,L > 0), i.e., αId ⪯ ∇2f(q) ⪯ LId for any q ∈ Rd. Then, the Legendre trans-
form f∗ of f belongs to C2(Rd), and is 1

L−strongly convex and 1
α -strongly smooth on

Rd. Furthermore, it holds that

f(q) + f∗(p)− q · p = Df (q : ∇f∗(p)) = Df∗(p : ∇f(q)).

Lemma 2.2. Suppose that T > 0 is the given terminal time, and that the Hamil-231
tonian H ∈ C1(Rd × Rd) is strongly convex with respect to the momentum p for any232
x ∈ Rd. Assume ρ0 ∈ C1(Rd) and g ∈ C1(Rd). Then233
(2.11)

Lρ0,g,T (ψ) = −
∫ T

0

∫
R2d

DH,x(∇ψ(x, t) : p) dµt(x, p)dt+
∫ T

0

∫
R2d

H∗(x,∇pH(x, p)) dµt(x, p)dt,234

where we denote DH,x(q1 : q2) = DH(x,·)(q1 : q2), i.e., DH,x is the x-dependent235
Bregman divergence regarding H(x, ·).236

The proof of Lemma 2.1 uses some standard arguments which are common in237
the convex optimization. The proof of Lemma 2.2 is done by direct calculation of238
Lρ0,g,T (ψ) and Lemma 2.1. For completeness, we provide the proofs in the supple-239
mentary material. The second term on the right-hand side of (2.11) does not involve240
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ψ, and thus can be treated as a constant, which implies that the original optimization241
(2.10) is equivalent to the following regression,242

min
ψ∈Ψ

{∫ T

0

∫
R2d

DH,x(∇ψ(x, t) : p) dµt(x, p)dt

}
.(2.12)243

As we know that µt(x, p) can be conveniently sampled according to the Hamiltonian244
ODEs (2.4), and by the Fubini’s theorem, we can reformulate (2.12) as245

(DH -Regression) min
[ψ]∈Ψ

{
L
DH,x

ρ0,g,T
(ψ)

}
,L

DH,x

ρ0,g,T
(ψ) ≜ Eω

[∫ T

0

DH,x(∇ψ(Xt(ω), t) : P t(ω))dt

]
.

(2.13)

246

This functional matches the gradient ∇ψ(Xt, t) to the momentum P t with respect to247
the Bregman divergence induced by the Hamiltonian H. And it can be approximated248
by the Monte–Carlo method once the samples are available. We use it as the loss in249
the supervised learning and discuss its details in section 3.1.250

We may also replace the DH,x by the quadratic distance | · |2. This does not251
weaken the performance of the original problem (2.12) since DH,x(q1 : q2) ≈ 1

2 (q1 −252

q2)
⊤∇2H(q2)(q1 − q2) for sufficiently close q1, q2. For this reason, we also propose253

the following least squares problem as the loss function in our algorithm, which may254
make the training easier.255

(Least Squares) min
[ψ]∈Ψ

{
L |·|2
ρ0,g,T

(ψ)
}
, L |·|2

ρ0,g,T
(ψ) ≜ Eω

[∫ T

0

|∇ψ(Xt(ω), t)− P t(ω)|2 dt
]
.

(2.14)

256

Proposition 2.1. Suppose H(x, p) = 1
2 |p|

2 + V (x). Then DH,x(q1 : q2) =257
1
2 |q1 − q2|

2, and the corresponding regression (2.13) is equivalent to the least squares258
formulation (2.14).259

Further discussion regarding this least squares problem and its related algorithm260
is provided in section 3.1. Next, we give a consistency result on the regression problem261
(2.13) whose proof can be found in the supplementary material.262

Theorem 2.1 (Consistency). Suppose the Hamiltonian H ∈ C1(Rd × Rd) sat-263
isfies the conditions that ∇xH,∇pH are Lipschitz, and that H is strictly convex264

with respect to p for any fixed x ∈ Rd. Assume that ψ̂ ∈ C2(Rd × [0, T ]) satisfies265

L
DH,x

ρ0,g,T
(ψ̂) = 0, then ψ̂ solves the following gradient-version of the Hamilton-Jacobi266

equation267

∇
(
∂

∂t
ψ̂(x, t) +H(x,∇ψ̂(x, t))

)
= 0, at (x, t) ∈ Rd × (0, t] with x ∈ Spt(ρt);

(2.15)

268

and ∇ψ̂(x, 0) = ∇g(x) with any x ∈ Spt(ρ0).269

Similarly, ψ̂ also solves (2.15) if L
|·|2
ρ0,g,T

(ψ̂) = 0.270

Proof. Given the Lipschitz condition on the vector field (∇xH⊤, ∇pH⊤)⊤, it is271
known that the underlying Hamiltonian system considered admits a unique solution272
with continuous trajectories a.s. for arbitrary initial condition (X0,∇u(X0)).273
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Let us recall the probability space (Ω,F , P ) used to describe the randomness of274
the Hamiltonian system. Since275

Eω

[∫ T

0

DH(∇ψ̂(Xt(ω), t) : P t(ω)) dt

]
= 0,276

then by the fact that Bregman divergence DH is always non-negative, we obtain277 ∫ T

0

DH(∇ψ̂(Xt(ω), t) : P t(ω)) dt = 0, P − almost surely.278

Thus, there exists a measurable subset Ω′ ⊂ Ω with P (Ω′) = 1 such that279 ∫ T

0

DH(∇ψ̂(Xt(ω
′), t) : P t(ω

′)) dt = 0, ∀ ω′ ∈ Ω′.280

By using the continuity and non-negativity (Definition 2.1) of DH(∇ψ̂(Xt(ω
′), t) :281

P t(ω
′)) with respect to t, we have282

(2.16) ∇ψ̂(Xt(ω
′), t) = P t(ω

′) for 0 ≤ t ≤ T.283

When t = 0, we have ∇ψ̂(X0(ω
′), 0) = P 0(ω

′). Recall the initial condition of the284

Hamiltonian System, we have P 0(ω
′) = ∇g(X0(ω

′)). This yields ∇ψ̂(X0(ω
′), 0) =285

∇g(X0(ω
′)) for any ω′ ∈ Ω′, which yields286

(2.17) ∇ψ̂(x, 0) = ∇g(x) for all x ∈ Spt(ρ0).287

On the other hand, for t ∈ (0, T ], by differentiating on both sides of (2.16) w.r.t. t,288
we obtain289

(2.18)
∂

∂t
∇ψ̂(Xt(ω

′), t) +∇2ψ̂(Xt(ω
′), t)Ẋt(ω

′) = Ṗ t(ω
′).290

Recall that we have291

Ẋt = ∇pH(Xt,P t) = ∇pH(Xt,∇ψ̂(Xt, t)),292

Ṗ t = −∇xH(Xt,P t) = −∇xH(Xt,∇ψ̂(Xt, t)).293

Plugging these into (2.18) yields294

∂

∂t
∇ψ̂(Xt(ω

′), t) +∇2ψ̂(Xt(ω
′), t)∇pH(Xt(ω

′),∇ψ̂(Xt(ω
′), t))295

= −∇xH(Xt(ω
′),∇ψ̂(Xt(ω

′), t)),296

which leads to297

∇
(
∂

∂t
ψ̂(Xt(ω

′), t) +H(x,∇ψ̂(Xt(ω
′), t))

)
= 0, ∀ ω′ ∈ Ω′.298

Since the probability density distribution of Xt is ρt, we have proved that299

(2.19) ∇
(
∂

∂t
ψ̂(x, t) +H(x,∇ψ̂(x, t))

)
= 0, ∀ x ∈ Spt(ρt).300
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Combining (2.17) and (2.19) proves this theorem.301

On the other hand, if L
|·|2
ρ0,g,T

(ψ̂) = 0. By using the fact that |∇ψ̂(Xt(ω), t) −302

P t(ω)|2 is continuous and non-negative for a.s. ω ∈ Ω, we can repeat the previous303
proof to show the same assertion still holds.304

Remark 2.1. We would like to point out that the solution of dynamical ODEs305
(2.4), and both definitions of the regression (2.13) and least square problems (2.14)306
can exist even after the singularity formation in the solution of HJ equation (1.1).307
This means that we can use the proposed method to compute the minimizers beyond308
the singularity time. An interesting question is what solution the proposed method309
computes. To answer it, Theorem 2.1 may give us some hints as it can be used to310
define a weak solution of HJ equation in the following sense. By swapping the integrals311

in L
DH,x

ρ0,g,T
, it holds that312

L
DH,x

ρ0,g,T
(ψ) =

∫ T

0

∫
Rd

DH,x(∇ψ(x, t) : p) dµt(x, p)dt313

=

∫ T

0

∫
Rd

(∫
Rd

DH,x(∇ψ(x, t) : p) dµt(p|x)
)
ρt(x)dx dt.314

The minimizer ψ̂ of L
DH,x

ρ0,g,T
can be viewed as a weak solution of the HJ equation since315

taking the first variation on ψ leads to316

−∇ ·
(
ρt(x)

(∫
Rd

∇q1DH,x(∇ψ̂(x, t) : p) dµt(p|x)
))

= 0.317

Here ∇q1DH,x(· : ·) is the partial derivative with respect to the first variable q1 of318

DH,x(q1 : q2). In particular, if H(x, p) = 1
2 |p|

2 + V (x), the minimizer of L
|·|2
ρ0,g,T

319
solves the following elliptic equation320
(2.20)

−∇ · (ρt(x)(∇ψ̂(x, t)− p̄(x, t))) = 0. where p̄(x, t) =
∫
Rd

p dµt(p|x). for t ∈ [0, T ].321

To sum up, in the proposed regression problem, ∇ψ̂ can be viewed as the orthogonal322
(with respect to the L2(ρt) inner product) projection of the µt(·|x)-weighted momentum323
p̄(x, t) to the space of gradient fields.324

This definition comes with several benefits. On the one hand, Theorem 2.1 verifies325
that the minimizer ψ̂ solves the HJ equation (2.15) in the strong sense (in the gradient326
form) before the time T∗ that the classical solution develops caustics. On the other327

hand, the lifetime of the minimizer ψ̂ of L
|·|2
ρ0,g,T

goes beyond T∗ since the conditional328
distribution µt(·|x) on momentum is not based on the Dirac type function centered at329
certain positions x. Although the minimizer may be multi-valued and has information330
about which mono-momentum to match with, we treat ψ̂ as the µt(·|x)-weighted “solu-331
tion” associated with the Hamilton-Jacobi equation (1.1) in this paper. However, how332
to theoretically understand the numerical solution after the singularity remains as an333
open question, which is beyond the scope of this paper. Furthermore, by modifying the334
cost functional in the regression problem, one may construct different types of weak335
solutions of HJ equations. This is another topic that deserves further investigation336
and careful discussion.337
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10 J. CUI, S. LIU, AND H. ZHOU

3. Supervised learning scheme via density coupling. In this section, we338
present the supervised learning scheme based on the density coupling strategy and339
the regression formulation (2.13).340

3.1. Algorithm. Our method for computing the Hamilton-Jacobi equation (1.1)341
associated with the probability density distribution ρ0 consists of the following two342
main steps.343

• (Generating sample trajectories on phase space) SampleN particles {x(k)0 }Nk=1344

from ρ0 with momentum p
(k)
0 = ∇g(x(k)0 ), and apply a suitable geometric345

integrator to solve the Hamiltonian system346

ẋ
(k)
t = ∇pH(x

(k)
t , p

(k)
t )

ṗ
(k)
t = −∇xH(x

(k)
t , p

(k)
t )

with initial condition (x
(k)
0 ,∇g(x(k)0 )).(3.1)347

at time steps ti = ih, with h = T
M , 1 ≤ i ≤ M for each k ∈ {1, 2, ..., N}. We348

denote the numerical solutions at ti as {(x̃(k)ti , p̃
(k)
ti )}, 1 ≤ k ≤ N .349

• (Compute ψ via supervised learning) Set up the neural network ψθ : Rd ×350
[0, T ] → R, and minimize the sum of average discrepancies between each351

∇xψθ(x̃(k)ti , ti) and p̃
(k)
ti at each time step ti evaluated on a random batch352

{x̃(kj)}N0
j=1 ⊂ {x̃(k)} with batchsize N0. More precisely, we denote353

(3.2) Loss(θ) =
1

M

M∑
i=1

(
1

N0

N0∑
k=1

D
H,x̃

(k)
ti

(∇xψθ(x̃(k)ti , ti) : p̃
(k)
ti )

)
.354

We apply stochastic gradient descent algorithms such as Adam’s method [26]355
to minimize Loss(θ) with respect to the parameter θ in ψθ. We summarize356
our method in Algorithm 3.1.357

Algorithm 3.1 Computing the gradient field of Hamilton-Jacobi equation (1.1) as-
sociated with initial density function ρ0.

Set up neural network ψθ : Rd × [0, T ]→ R;
Sample {x(k)0 }Nk=1 from ρ0;
Apply a suitable geometric integrator to solve the Hamiltonian system (3.1) with
initial condition x0 = x

(k)
0 , p0 = ∇g(x(k)0 ) to obtain the trajectory (x̃

(k)
ti , p̃

(k)
ti ) at

time steps 0 ≤ t1 ≤ · · · ≤ tM = T for each k, 1 ≤ k ≤ N .
for Iter = 0 to NIter do

Pick random batch with size N0 ≤ N from {x̃(k)};
Evaluate Loss(θ) defined as in (3.3);
Apply Adam’s method with learning rate lr to perform gradient descent θ ←

θ − lr ∇θLoss(θ);
if Loss(θ) ≤ err0 then

break;
end if

end for
∇xψθ(·, t) (0 ≤ t ≤ T ) is the computed gradient field of the Hamilton-Jacobi
equation (1.1).
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In our algorithm, we have the freedom to choose the geometric integrator to358
discretize the Hamiltonian system (2.4). There are various choices such as symplec-359
tic Runge–Kutta schemes, symplectic partitioned Runge–Kutta Methods, Strömer–360
Verlet scheme, etc. We refer interested readers to [20] and references therein for fur-361
ther details. Such structure-preserving methods could preserve the properties, such362
as symplectic structure and quadratic conservative quantities, of the original system363
as much as possible [14].364

A few observations have been made during our implementation of the proposed365
algorithm.366

First, Theorem 2.1 suggests that both the regression problem (2.13) and (2.14)367
are consistent with respect to equation (2.15). However, in practice, to perform the368
supervised learning in an efficient and stable way, one needs to avoid the case in which369
the Hessian (with respect to p) of the Hamiltonian H possesses a large conditional370
number. We adopt the least squares regression (2.14) and use the quadratic loss (3.3)371
instead of DH loss in (3.2) in our implementation,372

(3.3) Loss(θ) =
1

M

M∑
i=1

(
1

N0

N0∑
k=1

|∇xψθ(x̃(k)ti , ti)− p̃
(k)
ti |

2

)
.373

374
Second, it may be difficult for a single neural network to learn the solution on the375

entire time interval [0, T ], especially when T is large or when the solution experiences376
large-scale oscillations. In such cases, in order to improve the performance of our377
method, we split the time interval [0, T ] into smaller sub-intervals, train different ψθ378
on each sub-interval respectively, and then concatenate the solution together. We379
refer the reader to section 4.2.1 for further details.380

Third, we may re-sample the points {x(k)0 }1≤k≤N from ρ0 and repeat the pro-381
cedure in each training iteration to update θ. According to our experience, such a382
strategy produces numerical solutions with similar quality compared to that computed383
by the method with fixed samples throughout the simulations.384

3.2. Bound on the residual . In this part, we estimate the density weighted385
residual of the numerical solution ψθ produced from the proposed algorithm. Let us386
denote Φ̃h : R2d → R2d as the solution map of the chosen geometric integrator for387
(2.4), and388

(x̃ti , p̃ti) = Φ̃
(i)
h (x0,∇g(x0)) ≜ Φ̃h ◦ · · · ◦ Φ̃h︸ ︷︷ ︸

i Φ̃hs composing together

(x0,∇g(x0)),389

where the stepsize h = T
M , (x̃ti , p̃ti) is the numerical solution solved at time ti = ih390

with initial condition x0 and p0 = ∇g(x0). We denote ρ̃ti the probability density of391
random variable x̃ti . Let r ≥ 2 be the order of the local truncation error of numerical392
solver Φ̃h

2. Correspondingly, we denote Φt : R2d → R2d as the flow map of the393

2i.e., suppose (xh, ph) is the exact solution of (3.5) with initial condition (x0, p0) after one time
step h, then

(3.4) |Φ̃h(x0, p0)− (xh, ph)| = CΦ̃h
(x0, p0)h

r,

where CΦ̃h
((x0, p0)) is a constant only depending on the HamiltonianH, the initial condition (x0, p0),

and the numerical scheme.
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Hamiltonian system394

(3.5) ẋt = ∇pH(xt, pt), ṗt = −∇xH(xt, pt),395

i.e., Φt((x0, p0)) = (xt, pt) for t ∈ [0, T ].396
For the given approximation ψθ to the solution of the Hamilton–Jacobi equation,397

we consider the loss vector of the supervised learning at each sample point as398

(3.6) e
(k)
ti = ∇ψθ(x̃(k)ti , ti)− p̃

(k)
ti .399

Let us set400

(3.7) εNi =
1

N

N∑
k=1

|e(k)ti | and δN,hi =
1

N

N∑
k=1

|e(k)ti+1
− e(k)ti |
h

401

as the empirical average of the training loss and its difference quotient at time node ti,402
respectively. We note that when ∇ψθ is Lipschitz on the support of the probability403

density function, e(k)ti is continuous with respect to ti along (3.5). In particular, if404

there is no training error (i.e., e(k)ti = 0), we have εNi = δN,hi = 0. Our estimate on the405
L1-residual of ∇ψθ is presented in the next theorem.406

Theorem 3.1 (Posterior estimation on L1 residual of Hamilton-Jacobi equation).407
Suppose that ∂H

∂p and ∂H
∂x are Lipschitz with constants L1 and L2 respectively, the408

initial distribution ρ0 has a compact support, ϵ ∈ (0, 1) is a given constant, M is large409
enough such that M ≥ max{T, T2 (L1 + L2)e

L1+L2}, and the time stepsize is taken as410

h = T
M . Assume that the neural network ψθ is trained by minimizing the loss (3.3)411

with data generated by a numerical integrator of order r for (3.1) with initial samples412

{x(k)t0 }
N
k=1 drawn from ρ0. Then with probability 1− ϵ, ψθ satisfies413 ∫
Rd

∣∣∣∣∇( ∂

∂t
ψθ(x, ti) +H(x,∇ψθ(x, ti))

)∣∣∣∣ ρ̃ti(x)dx414

≤ 1

2
λ(θ, i)h+ η(θ, i)hr−1 + δN,hi + ν(θ, i)εNi +R(θ, i)

√
lnM + ln 2

ϵ

2N
,(3.8)415

at ti = ih, i = 1, . . . ,M . Here, λ(θ, i), η(θ, i), ν(θ, i), R(θ, i) are non-negative con-416
stants depending on the parameter θ, time node ti, Hamiltonian H, initial distribution417
ρ0, and numerical scheme Φ̃h.418

Proof. Let us focus on the k-th trajectory {(x̃(k)ti , p̃
(k)
ti )}Mi=0. At time node ti,419

i ≤M − 1, we denote420

(x̂(k)τ , p̂(k)τ ) = Φτ (x̃
(k)
ti , p̃

(k)
ti ), τ ≥ 0.421

For simplicity, we omit the superscript (k) of each (x̃
(k)
ti , p̃

(k)
ti ), (x(k)t , p

(k)
t ), (x̂(k)τ , p̂

(k)
τ )422

and e(k)i . We start by considering423

∇ψθ(x̃ti+1 , ti+1)−∇ψθ(x̃ti , ti) = p̃ti+1 − p̃ti + (ei+1 − ei)(3.9)424

The left-hand side of (3.9) can be recast as425

(∇ψθ(x̂h, ti+1)−∇ψθ(x̃ti , ti)) + (∇ψθ(x̃ti+1
, ti+1)−∇ψθ(x̂h, ti+1)),426
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where the first term can be formulated as427

∇ψθ(x̂h, ti+1)−∇ψθ(x̃ti , ti) =
∫ h

0

d

dτ
∇ψθ(x̂τ , ti + τ) dτ428

=

∫ h

0

∇2ψθ(x̂τ , ti + τ)
∂

∂p
H(x̂τ , p̂τ ) +

∂

∂t
∇ψθ(x̂τ , ti + τ) dτ.429

For the second equality, we recall that ˙̂xτ = ∂
∂pH(x̂τ , p̂τ ).430

On the other hand, the right-hand side of (3.9) can be formulated as431

(p̂h − p̃ti) + (p̃ti+1
− p̂h) + (ei+1 − ei),432

where the first term can be rewritten as433

p̂h − p̃ti =
∫ h

0

˙̂pτ dτ =

∫ h

0

− ∂

∂x
H(x̂τ , p̂τ ) dτ.434

Combining the previous calculations, we obtain435 ∫ h

0

∂

∂t
∇ψθ(x̂τ , ti + τ) +∇2ψθ(x̂τ , ti + τ)

∂

∂p
H(x̂τ , p̂τ ) +

∂

∂x
H(x̂τ , p̂τ ) dτ436

= (∇ψθ(x̂h, ti+1)−∇ψθ(x̃ti+1
, ti+1)) + (p̃ti+1

− p̂h) + (ei+1 − ei).(3.10)437

We estimate the distance between x̂τ and x̂0 = x̃ti by considering438

|x̂τ − x̂0| ≤
∫ τ

0

| ∂
∂p
H(x̂s, p̂s)| ds ≤

∫ τ

0

| ∂
∂p
H(x̂0, p̂0)|+ | ∂

∂p
H(x̂0, p̂0)−

∂

∂p
H(x̂s, p̂s)| ds439

≤ τ | ∂
∂p
H(x̂0, p̂0)|+ L1

∫ τ

0

|x̂s − x̂0|+ |p̂s − p̂0| ds,(3.11)440

where the second inequality is due to the Lipschitz property of ∂H
∂p . Similarly, for p̂τ441

and p̂0 = p̃ti , we have442
(3.12)

|p̂τ − p̂0| ≤
∫ τ

0

| − ∂

∂x
H(x̂s, p̂s)| ds ≤ τ |

∂

∂x
H(x̂0, p̂0)|+L2

∫ τ

0

|x̂s − x̂0|+ |p̂s − p̂0| ds443

By adding (3.11) and (3.12) and applying the Grönwall’s inequality, we obtain444

|x̂τ − x̃ti |+ |p̂τ − p̃ti | ≤ (| ∂
∂p
H(x̃ti , p̃ti)|+ | ∂

∂x
H(x̃ti , p̃ti)|)(3.13)445

×
(
τ +

e(L1+L2)τ − (L1 + L2)τ − 1

L1 + L2

)
,446

From the Lipschitz property and the inequality ex ≤ 1 + x + 1
2e
xx2 for x ≥ 0, the447

right hand side of (2) can be further bounded by448 (
(L1+L2)(|x̃ti |+ |p̃ti |)+ (|∂pH(0, 0)|+ |∂xH(0, 0)|)

)(
τ +

1

2
e(L1+L2)τ (L1 + L2)τ

2

)
.449

Let us denote Rti = max
1≤k≤N

{|x̃(k)ti | + |p̃
(k)
ti |}, L = L1 + L2 and C = |∂pH(0, 0)| +

|∂xH(0, 0)|. Since we assume that

M ≥ max{T, T
2
(L1 + L2)e

L1+L2},
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the time stepsize

h ≤ T

M
≤ min{1, 2

L1 + L2
e−(L1+L2)}.

Then for 0 ≤ τ ≤ h, we have 1
2e

(L1+L2)τ (L1 +L2)τ
2 ≤ 1

2e
LhLh · τ ≤ τ . Thus, (2) can450

be bounded by451

|x̂τ − x̃ti |+ |p̂τ − p̃ti | ≤ 2(LRti + C + 1)τ.452

Denote the time-space region Ei ⊂ Rd × R+ as453

Ei = {(y, s) | |y| ≤ Rti + (LRti + C + 1)h, ti ≤ s ≤ ti+1}.454

Notice that (x̂τ , ti + τ) ∈ Ei for any 0 ≤ τ ≤ h. We define455

(3.14) LAθ,i = LipEi
(∂t∇ψθ) ≜ sup

(y,s),(y′,s′)∈Ei

|∂t∇ψθ(y, s)− ∂t∇ψθ(y′, s′)|
|y − y′|+ |s− s′|

,456

i.e., LAθ,i as the Lipschitz constant of vector function ∂t∇ψθ(x, t) on Ei. Then we have457
458

(3.15) |∂t∇ψθ(x̂τ , ti+τ)−∂t∇ψθ(x̃ti , ti)| ≤ LAθ,i(|x̂τ−x̃ti |+τ) ≤ LAθ,i 3(LRti+C+1)h.459

Let us denote460

(3.16) Mθ,i = sup
x∈supp(ρ̃ti )

∥∇2ψθ(x, ti)∥,461

and462

(3.17) LBθ,i = LipEi
(∇2ψθ) ≜ sup

(y,s),(y′,s′)∈Ei

∥∇2ψθ(y, s)−∇2ψθ(y
′, s′)∥

|y − y′|+ |s− s′|
,463

here ∥ · ∥ is the 2-norm of the square matrix.464
Direct calculation yields that465

∣∣∣∣∇2ψθ(x̂τ , ti + τ)
∂

∂p
H(x̂τ , p̂τ )−∇2ψθ(x̃ti , ti)

∂

∂p
H(x̃ti , p̃ti )

∣∣∣∣
(3.18)

466

=

∣∣∣∣(∇2ψθ(x̂τ , ti + τ)−∇2ψθ(x̃ti , ti))
∂

∂p
H(x̂τ , p̂τ ) +∇2ψθ(x̃ti , ti)(

∂

∂p
H(x̂τ , p̂τ )−

∂

∂p
H(x̃ti , p̃ti ))

∣∣∣∣467

≤LBθ,i(|x̂τ − x̃ti |+ τ)

∣∣∣∣ ∂∂pH(x̂τ , p̂τ )

∣∣∣∣+ ∥∇2ψθ(x̃ti , ti)∥L1(|x̂τ − x̃ti |+ |p̂τ − p̃ti |)468

≤LBθ,i(2(LRti + C + 1)τ + τ)(|∂pH(0, 0)|+ L1(Rti + 2(LRti + C + 1)τ))469

+Mθ,i2L1(LRti + C + 1)τ,470

and that471
(3.19)∣∣∣∣ ∂∂xH(x̂τ , p̂τ )−

∂

∂x
H(x̃ti , p̃ti)

∣∣∣∣ ≤ L2(|x̂τ − x̃ti |+ |p̂τ − p̃ti |) ≤ 2L2(LRti + C + 1)τ472

For convenience, we introduce473

Dψθ(x, p, t) =
∂

∂t
∇ψθ(x, t) +∇2ψθ(x, t)

∂

∂p
H(x, p) +

∂

∂x
H(x, p).474
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Combining (3.15),(3.18) and (3.19), and denoting475

λ(θ, i) =3LAθ,i(LRti + C + 1) + LBθ,i3(LRti + C + 1)(|∂pH(0, 0)|476

+ L1(Rti + 2(LRti + C + 1)h)) + 2L1Mθ,i(LRti + C + 1) + 2L2(LRti + C + 1),(3.20)477

we can bound478

(3.21) |Dψθ(x̂τ , p̂τ , ti + τ)−Dψθ(x̃ti , p̃ti , ti)| ≤ λ(θ, i)τ.479

We reformulate (3.10) as480

hDψθ(x̃ti , p̃ti , ti) =

∫ h

0

Dψθ(x̃ti , p̃ti , ti)−Dψθ(x̂τ , p̂τ , ti + τ) dτ481

+ (∇ψθ(x̂h, ti+1)−∇ψθ(x̃ti+1 , ti+1)) + (p̃ti+1 − p̂h) + (ei+1 − ei).482

We have the following estimate483

|Dψθ(x̃ti , p̃ti , ti)| ≤
1

h

∫ h

0

|Dψθ(x̂τ , p̂τ , ti + τ)− Dψθ(x̃ti , p̃ti , ti)| dτ

(3.22)

484

+
1

h
|∇ψθ(x̂h, ti+1)−∇ψθ(x̃ti+1 , ti+1)|+

|p̃ti+1 − p̂h|
h

+
|ei+1 − ei|

h
.485

Using (3.21), the first term on the right hand side of (3.22) is upper bounded by486
1
2λ(θ, i)h.487

Let us define488

Di = {x | |x| ≤ Rti + 3(LRti + C + 1)h }.489

and490

(3.23) LCθ,i = Lip(∇ψθ(·, ti)) ≜ sup
y,y′∈Di

|∇ψθ(y, ti)−∇ψθ(y′, ti)|
|y − y′|

.491

Recall the notation used in (3.4). Since we assume that the numerical scheme for492
integrating the Hamiltonian system has local truncation error of order r, the second493
term can be bounded by494
(3.24)
1

h
|∇ψθ(x̂h, ti+1)−∇ψθ(x̃ti+1

, ti+1)| ≤ LCθ,i+1

|x̂h − x̃ti+1 |
h

≤ LCθ,i+1CΦ̃h
(x̃ti , p̃ti)h

r−1.495

Similarly, the last two terms in (3.22) can be bounded by CΦ̃h
(x̃ti , p̃ti)h

r−1.496
The left hand side of (3.22) can be recast as497

|Dψθ(x̃ti ,∇ψθ(x̃ti), ti) + (Dψθ(x̃ti , p̃ti , ti)−Dψθ(x̃ti ,∇ψθ(x̃ti), ti))|.498

Since ∇ψθ(x̃ti , ti) = p̃ti + ei, we have499

|Dψθ(x̃ti , p̃ti , ti)−Dψθ(x̃ti ,∇ψθ(x̃ti), ti)|500

≤ ∥∇2ψθ(x̃ti , ti)∥L1|p̃ti −∇ψθ(x̃ti)|+ L2|p̃ti −∇ψθ(x̃ti)|501

≤ (Mθ,iL1 + L2)ei.502
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Let us recall503

Dψθ(x̃ti ,∇ψθ(x̃ti), ti) = ∇
(
∂

∂t
ψθ(x̃ti , ti) +H(x̃ti ,∇ψθ(x̃ti))

)
,504

thus, (3.22) leads to505 ∣∣∣∣∇( ∂

∂t
ψθ(x̃ti , ti) +H(x̃ti ,∇ψθ(x̃ti))

)∣∣∣∣506

≤ 1

2
λ(θ, i)h+ (LCθ,i+1 + 1)CΦ̃h

(x̃ti , p̃ti)h
r−1 +

|ei+1 − ei|
h

+ (Mθ,iL1 + L2)ei.507

We finally take average over the sample points {x̃(k)ti }1≤k≤N . This leads to508

1

N

N∑
k=1

∣∣∣∣∇(
∂

∂t
ψθ(x̃

(k)
ti
, ti) +H(x̃

(k)
ti
,∇ψθ(x̃

(k)
ti

))

)∣∣∣∣509

≤
1

2
λ(θ, i)h+ (LCθ,i+1 + 1)

1

N

N∑
k=1

CΦ̃h
(x̃

(k)
ti
, p̃

(k)
ti

)︸ ︷︷ ︸
denote as η(θ,i)

hr−1 +
1

N

N∑
k=1

|e(k)i+1 − e
(k)
i |

h
+ (Mθ,iL1 + L2)︸ ︷︷ ︸

denote as ν(θ,i)

|e(k)i |.

(3.25)

510

This provides an upper bound on the empirical average of the L1-residual of ψθ using511

the computed samples {x̃(k)ti }1≤k≤N at time node ti.512
To further estimate the expectation of the L1-residual at all the time nodes513

{t1, . . . , tT }, let us denote ρ̃ti = (Φ̃h ◦ · · · ◦ Φ̃h)♯ρ0 as the probability density function514
of the numerical solution x̃ti computed by the chosen scheme starting from x0 ∼ ρ0.515
For simplicity, let us denote the residual term of the Hamilton-Jacobi equation as516

R[ψθ](x, t) = ∇
(
∂

∂t
ψθ(x, t) +H(x,∇ψθ(x, t))

)
.517

For a fixed time ti and samples {x̃(k)ti }1≤k≤N ∼ ρ̃ti , by Hoeffding’s inequality (see e.g.518
[37]), for any 0 < δ < 1, with probability 1 − δ, we can bound the gap between the519
expectation and the empirical average of the L1 residual as520

(3.26)∣∣∣∣∣
∫
Rd

|R[ψθ](x, ti)|ρ̃ti dx−
1

N

N∑
k=1

|R[ψθ](x̃(k)ti , ti)|

∣∣∣∣∣ ≤ sup
x∈supp(ρ̃ti )

|R[ψθ](x, ti)|︸ ︷︷ ︸
denote as R(θ,i)

√
ln 2

δ

2N
.521

Since we assume that supp(ρ0) is a bounded set, and the solution map Φ̃h of the522
numerical scheme is continuous, then supp(ρ̃ti) is also bounded. Thus R(θ, i) is guar-523
anteed to be finite.524

By combining (3.25) and (3.26), for any time node ti, with probability 1− δ, we525
can estimate the average L1 residual of Hamilton-Jacobi equation at time ti as526 ∫

Rd

∣∣∣∣∇( ∂

∂t
ψθ(x, ti) +H(x,∇ψθ(x, ti))

)∣∣∣∣ ρ̃ti dx527

≤ 1

2
λ(θ, i)h+ η(θ, i)hr−1 +

(
1

N

N∑
k=1

|e(k)i+1 − e
(k)
i |

h
+ ν(θ, i)|e(k)i |

)
+R(θ, i)

√
ln 2

δ

2N
.

(3.27)

528
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If we denote the subset Ωti of the sample space on which (3.27) holds. It follows that529
P(Ωcti) ≤ δ. Then we have530

P

(
M⋂
i=1

Ωti

)
= 1− P

(
M⋃
i=1

Ωcti

)
≥ 1−

M∑
i=1

P
(
Ωcti
)
≥ 1−Mδ.531

By letting Mδ = ϵ, we have shown that for the fixed neural network ψθ, initial532

distribution with density ρ0 and initial samples {x(k)t0 }
N
k=1 ∼ ρ0, with probability533

1− ϵ,534 ∫
Rd

∣∣∣∣∇( ∂

∂t
ψθ(x, ti) +H(x,∇ψθ(x, ti))

)∣∣∣∣ ρ̃ti dx535

≤ 1

2
λ(θ, i)h+ η(θ, i)hr−1 + δN,hi + ν(θ, i)εNi +R(θ, i)

√
lnM + ln 2

ϵ

2N
(3.28)536

holds at any time node ti, i = 1, 2, . . . ,M .537

We want to highlight that the posterior estimation on the L1-residual of ∇ψθ538
consists of three parts: the numerical error depending on the geometric integrator539
1
2λ(θ, i)h+η(θ, i)h

r−1 in (3.8), the training error δN,hi +ν(θ, i)εNi caused by the neural540

network approximation, and the sampling error R(θ, i)((lnM +ln 2
ϵ )/(2N))1/2 due to541

the Monte–Carlo method. For the results about explicit bound of εNi , one may use542
the McDiarmid’s inequality [37] and Rademacher complexity Rad(F ) of the function543
set F = {R[ψθ] ◦ Φ̃ih}i=0,1,...,M , as well as Masaart Lemma [37] on estimating the544
upper bound of Rad(F ). Since εNi mainly relies on the approximation power of ψθ,545
which is another topic beyond the scope of this work, we omit its detailed discussion546
here.547

We note that the error estimate (3.8) is established for density-weighted residual548
of ∇ψθ. Here the probability density ρ̃ti of numerical solution x̃ti is solved via the549
geometric integrator Φ̃h. We anticipate smaller residual values of ∇ψθ at the region550
on which ρ̃ti possesses a higher probability. On the contrary, no estimate is provided551
outside of the support of ρ̃ti . Such an observation is verified in the later section 4.1.552

We would like to remark that, if assuming the existence of the classical solution,553
one can show that the temporal convergence order of numerical integrator in proposed554
algorithm can be improved to r − 2 (r > 2) via similar arguments as in the proof of555
Theorem 3.1. Besides, the error analysis in Theorem 3.1 works for any T > 0 even556
when T goes beyond the threshold time T∗ of classical solution. However, when ti is557
approaching (or even surpassing) T∗, the superposition of momentum vectors in the558
configuration space often leads to a larger training loss Ei, which increases the error559
upper bound in (3.8). Such increment in the loss values Ei is reflected in several nu-560
merical examples demonstrated in section 4.2. This is justifiable because the classical561
solution itself even cannot be extended beyond T∗, and we are not able to control the562
residual value of ∇ψθ when time ti approaches (or surpasses) T∗. On the other hand,563
in our proposed algorithm, the numerical solution ψθ extends naturally beyond T∗,564
which can be treated as the approximation to the µt(·|x)−weighted “solution” ψ̂ to565
the HJ equation (1.1) discussed in remark 2.1. Several numerical examples of such566
µt(·|x)−weighted “solution” are also demonstrated in section 4.2.567

4. Numerical tests. In our implementation, we set ψθ(·, ·) : Rd+1 → R as568
neural network with ResNet [22] structure in our implementation. To be more precise,569
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18 J. CUI, S. LIU, AND H. ZHOU

we consider the following neural network NNL,d̃
θ (·, ·) : Rd+1 → R with depth L and570

width (hidden dimension) d̃ as571

NNL,d̃
θ (x, t) = fL ◦ fL−1 ◦ . . . f2 ◦ f1(x, t),572

with each fk(y) = σ(y + κ(Aky + bk)). We choose the activation function σ(·) as573
the hyperbolic tangent function tanh(·). And κ ∈ R+ is the stepsize of each layer,574

we choose κ = 0.5 in our experiments. Furthermore, A1 ∈ Md̃×(d+1)(R), b1 ∈ Rd̃,575

Ak ∈Md̃×d̃(R), bk ∈ Rd̃ for all 2 ≤ k ≤ L− 1, and AL ∈M1×d̃(R), bL ∈ R1 compose576

the parameter θ ∈ R(L−2)d̃2+d̃(d+2)+(L−1)d̃+1 of this neural network.577
We apply the Adam method [26] to train ψθ in Algorithm 3.1. We pick the random578

batch size N0 = 1200 and the threshold err0 = 10−4 for all the numerical experiments579
discussed in this section. All the numerical examples are tested on Google Colab with580
GPU acceleration. The training time for ψθ on each time interval is around 3-10581
minutes for problems with dimensions varying from 2 to 30.582

4.1. Residual and error bounds. Theorem 3.1 states that the expectation583
of the residual can be bounded, where the expectation is taken with respect to the584
distribution ρ̃ti of samples used for training ψθ. Thus we anticipate a smaller residual585
value on the support of ρ̃ti ; On the other hand, the residual outside of the support586
of ρ̃ti can not be controlled due to lack of learning samples. This is observed in the587
following examples.588

Consider the Hamilton-Jacobi equation on R2 × [0, T ] with T = 3, H(x, p) =589
|p|2
2 + |x|2

2 and initial data u(x) = |x|2
2 . We choose ρ0 = N ((3, 3), I), i.e., the normal590

distribution shifted by (3, 3). We set ψθ = NNL,d̃
θ with L = 7, d̃ = 40. We choose591

the number of time subintervals M = 40, and the number of samples N = 7500. We592
set the learning rate lr = 0.5 · 10−4 and perform Adam’s method for NIter = 8000593
iterations. We plot the heat map of the residual term594

(4.1) Res(x, t) =
∣∣∣∣∇( ∂

∂t
ψθ(x, t) +H(x,∇ψθ(x, t))

)∣∣∣∣595

together with the samples {x(k)ti }
N
k=1 at different time nodes ti in the first row of Figure596

1. The support of the samples mostly overlaps with the region on which the residual597
value Res(x, t) is small. A similar observation is also found about the error between598
∇ψθ(x, t) and the real solution ∇u(x, t), where u(x, t) = 1

2 cot(t+
π
4 )|x|

2, i.e.599

(4.2) Err(x, t) = |∇ψθ(x, t)−∇u(x, t)|.600

The results are demonstrated in the second row of Figure 1.601
Another interesting question is how the sample size N affects the accuracy of602

the numerical solution ∇ψθ. To test it, we train ψθ by using different sample size603
N while keeping other hyperparameters unchanged. We examine the relationship604
between the L2(ρt) error ∥∇ψθ(·, t) − ∇u(·, t)∥2L2(ρt)

and the sample size N on time605

interval [0, 0.25], where we discretize the time interval into M = 100 subintervals.606
We repeat Algorithm 3.1 for different sample sizes N = 16 ·2k with k = 0, 1, . . . 9.607

We approximate the L2(ρt) discrepancy between numerical solution ∇ψθ and real608
solution ∇u by using the Monte–Carlo method with a large sample size 45000. We609
conduct the numerical experiments on the same Hamilton-Jacobi equation with di-610
mensions being 2 and 10 respectively. The results are plotted in Figure 2, showing611
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(a) t = 3/8
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(b) t = 9/8
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(c) t = 15/8
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(d) t = 21/8

Figure 1: (Up row) Heat graphs of the residual Res(x, t) of the numerical solution
ψθ and the sample points (black) at different time stages t. (Down row) Heat graphs
of the error Err(x, t) of the numerical solution ψθ and the sample points (black) at
different time stages t.

that the accuracy of the proposed method improves as the number of sample sizes N612
increases.613
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(c) d = 10, t = 0.1
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(d) d = 10, t = 0.2

Figure 2: Average error versus sample size plots (log2− log2) for 2D and 10D HJ
equation (plots with confidence interval (25%− 75%) based on 40 sets of data)

4.2. Solving HJ equations . In this part, we first test our algorithm on the614
separable Hamiltonian H(x, p) = K(p) + V (x) with the quadratic kinetic energy615
K(p) = 1

2 |p|
2. For these examples, we apply our method to solve equation (1.1) with616

the one-step Störmer–Verlet scheme [20] for the corresponding Hamiltonian system617
(3.1) We then compute an HJ equation with non-separable Hamiltonian H(x, p) in618
example 4.2.4, in which the explicit symplectic scheme proposed in [40] is used to619
compute the Hamiltonian system (3.1) in our algorithm. Finally, in example 4.2.5,620
we apply our algorithm to the linear quadratic control (LCQ) problem of inverted621
pendulums with terminal density constraint.622

We summarize the hyperparameters used in our algorithm for each numerical623
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example in the following table. Recall that L is the depth and d̃ is the width of the624
neural network ψθ; M denotes the total number of time steps; MT denotes the number625
of subintervals used to divide the entire time interval [0, T ], which will be explained626
in details in example 4.2.1; N is the number of samples used in our computation; lr is627
the learning rate for the Adam method; and NIter denotes the total iteration number.628

Example (dimension) L d̃ M MT N lr NIter

4.2.1 (d = 30) 6 50 200 25 8000 10−4 30000
4.2.2 (d = 20) 6 50 30 1 12000 0.5× 10−4 6000
4.2.3 (d = 30) 6 80 100 1 5000 0.5× 10−4 6000
4.2.4 (d = 20) 7 40 100 4 5000 10−4 12000
4.2.5 (d = 4) 6 40 100 1 5000 0.5 · 10−4 20000

Table 1: Hyperparameters of our algorithm for examples 4.2.1 - 4.2.4.

629

4.2.1. Example with Quadratic Potential. We set the potential and the630
initial condition as V (x) = 1

2 |x|
2 and g(x) = 1

2 |x|
2. We choose ρ0 = N ((3, ..., 3)︸ ︷︷ ︸

30

, I)631

and solve this equation on [0, 5].632
It can be verified directly that u(x, t) = 1

2 cot(t +
π
4 )|x|

2 is the classical solution633
to the equation on [0, 3π4 ). When t approaches T∗ = 3π

4 , this classical solution blows634
up. Our method is able to compute both the classical solution as well as the extended635
solution beyond T ∗.636

The solution to this HJ equation possesses a rather strong oscillatory profile along637
time t. Due to the rigidity of the neural network, given T = 5, it is generally difficult638
for a single neural network to capture the overall shape of {u(x, t)}t≥0 [29].639

As a remedy, in order to make our computation more efficient, we apply the640
multi-interval training strategy in this example. We separate [0, T ] into multiple641
shorter subintervals and train different neural networks on each subinterval. Our642
experiments indicate that such treatment of training the networks independently on643
each subinterval and concatenating together improves the flexibility of the numerical644
solution ψθ(x, t) and thus enhances the performance. To be more specific, we divide645

[0, T ] into MT = 25 equal intervals, i.e., [0, T ] =
⋃MT

k=1 Ik with each Ik = [k−1
MT

T, k
MT

T )646

for 1 ≤ k ≤ MT − 1 and IMT
= [MT−1

MT
T, T ]. We train ψθk on each Ik and set647

ψθ(x, t) =
∑MT

k=1 χIk(t)ψθk(x, t) as our numerical solution. Here χIk is the indicator648
function of time interval Ik.649

We demonstrate the numerical solutions in Figure 3. Since the solution is a650
high dimensional function, we plot its graph on the 5-th and 15-th coordinates. For651
convenience, we call it 5th − 15th plane. It is observed that both the solution and652
vector field have good agreements with their exact counterparts at the regions where653
samples are drawn.654

Recall the {ϵNi } defined in (3.7), we calculate the total loss
∑jl−1
i=(j−1)l ε

N
i among655

the time nodes located in the subinterval Ij , where l = M
MT

, and plot
∑jl−1
i=(j−1)l ε

N
i656

(1 ≤ j ≤MT ) versus time in Figure 4. It is clear that the error increases significantly657
around T∗ = 3π

4 ≈ 2.36. According to our experience, it is intrinsically difficult to658
compute the solution near singular point T∗.659

This manuscript is for review purposes only.



A SUPERVISED LEARNING SCHEME FOR HJ EQUATION VIA DENSITY COUPLING 21

(a) t = 0.0 (b) t = 1.0 (c) t = 2.0 (d) t = 3.0 (e) t = 4.0 (f) t = 5.0

Figure 3: 1st row: Graphs of the numerical solution ψθ (blue) and the exact solution
(red) at different time stages on the 5th− 15th plane; 2nd row: Plots of vector fields
∇ψθ(·, t) (green) with momentums of samples (red) at different time stages on the
5th− 15th plane.

Figure 4: Plot of
∑jl−1
i=(j−1)l ε

N
i (1 ≤ j ≤ MT ) versus time (Left) and its semi-log10

plot (Right).

4.2.2. Example with Sinusoidal Initial Condition. In this example, we660
consider the Hamiltonian with a degenerate quadratic kinetic energy and without661
potential energy. We set the kinetic energy K(p) = 1

2p
⊤Σp+ τη⊤p with Σ = 1

d11
⊤,662

η = 1√
d
1, τ = 3. Here we define 1 = (1, 1, ..., 1)⊤ as a d-dimensional vector. We663

pick the initial condition u(x, 0) = g(x) with g(x) = cos(
√
3η⊤x). We choose ρ0 as664

the uniform distribution on the square region [−4.5, 4.5]d and solve this equation on665
[0, 23 ].666

It can be verified that the classical solution u(x, t) of (1.1) takes the form u(x, t) =667
f(η⊤x, t), where f(·, t) : R→ R satisfies668

f ′(ξ + t(τ −
√
3 sin(

√
3ξ)), t) = −

√
3 sin(

√
3ξ),669

for any ξ ∈ R. We denote φt(ξ) = ξ+t(τ−
√
3 sin(

√
3ξ)). Since φ′

t(ξ) = 1−3t cos(
√
3ξ),670
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φt is injective when time t < 1
3 . Thus,671

f ′(x, t) = −
√
3 sin(

√
3φ−1

t (x)),672

for all t ∈ [0, 1/3), on which we can also verify that the classical solution to Hamilton-673
Jacobi equation (1.1) exists.674

We demonstrate the numerical solutions in Figure 5. In order to compare our

(a) t = 0 (b) t = 1
9

(c) t = 2
9

(d) t = 1
3

(e) t = 4
9

(f) t = 5
9

(g) t = 2
3

Figure 5: 1st row: Graphs of our numerical solution ψθ (blue) at different time
stages on the 5th− 15th plane; 2nd row: Plots of vector fields ∇ψθ(·, t) (green) with
momentums of samples (red) at different time stages on the 5th− 15th plane.

675
numerical solution with the exact solution clearly, we fix on the diagonal line passing676
through 0 in R20 and plot our numerical solution (green) against the exact solution677
(red) before time T∗ = 1

3 in Figure 6. They show good agreement.678

We further plot the loss 1
N

∑N
k=1 |e

(k)
ti |

2 (recall e(k)ti defined in (3.6)) versus the679
time nodes ti in Figure 10(left subfigure). One can observe that the loss remains small680
before T∗ = 1

3 and increases significantly afterward. This is due to the singularity681
developed at T∗.682

4.2.3. Example with Sinusoidal Potential and Gaussian Mixture as the683
Initial Distribution . We now consider the Hamiltonian with a sinusoidal potential684
energy H(x, p) = 1

2 |p|
2+cos(2xi1+0.4)+cos(2xi2+0.4), the initial condition u(x, 0) =685

g(x) = sin(xi1 +0.15)+sin(xi2 +0.15), and the initial distribution ρ0 = 1
2 (N (µ1, I)+686

N (µ2, I)), where µ1 = −π2 (ei1 + ei2) and µ2 = π
2 (ei1 + ei2). Here ei denotes the687

vector with i-th entry being 1 and remaining entries all 0; and i1, i2 are two different688
integers between 1 and d. In this example, we set d = 30, i1 = 10, i2 = 20. We solve689
the equation on [0, 1]. A similar equation in one dimension was first considered in [23]690
and [24] in which the multivalued physical observables for the semiclassical limit of691
the Schrödinger equation was computed.692

We demonstrate the numerical solutions in Figure 7. Similarly, we plot the loss693
1
N

∑N
k=1 |e

(k)
ti |

2 versus time nodes ti in Figure 10(middle subfigure), which shows a694
significant increase in loss after t = 0.4. We don’t know the exact solution for this695
example. The numerical result suggests that the kinks of the solution may develop at696
T∗ ≈ 0.4.697
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(a) t = 0 (b) t = 1
18

(c) t = 1
9

(d) t = 1
6

(e) t = 2
9

(f) t = 5
18

Figure 6: 1st and 3rd row: Comparison between directional derivative of numerical
solution η⊤∇ψθ(x, t) (green) and exact solution η⊤∇u(x, t) (red); 2nd and 4th row:
Compare the function value of numerical solution ψθ(x, t) (green) with exact solution
ψ(x, t) (red). Both are restricted on the diagonal line in R20.

(a) t = 0 (b) t = 0.2 (c) t = 0.4 (d) t = 0.6 (e) t = 0.8 (f) t = 1.0

Figure 7: (Up row) Graphs of our numerical solution ψθ (blue) at different time
stages on the 10th − 20th plane; (Down row) Plots of vector fields ∇ψθ(·, t) (green)
with momentums of samples (red) at different time stages on the 10th− 20th plane.

4.2.4. Example of non-separable Hamiltonian. In this example, we con-698
sider the following non-separable Hamiltonian699

(4.3) H(x, p) =
1

2
(|x|2 + 1)(|p|2 + 1).700

We take the initial value u(x, 0) = g(x) = 0 and solve this equation on [0, 1]. We set701
the initial distribution ρa = N (0, 2I) and the dimension d = 10. We adopt the explicit702
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symplectic scheme (with ω = 10) proposed in [40] to integrate the Hamiltonian system703
(3.1) associated with the Hamiltonian (4.3). The phase portraits are plotted in Figure704
8.
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Figure 8: Phase portraits of the Hamiltonian system associated with non-separable
Hamiltonian (4.3). Here 0 ≤ t ≤ 1. The dimension of x is 10, the dimension of
the system is 20. We visualize the portraits by projecting the trajectories onto the
first component of x and p. We use different colors to separate time intervals: green-
[0, 0.2); blue-[0.2, 0.4); orange-[0.4, 0.6); red-[0.6, 8); pink-[0.8, 1.0).

705
We demonstrate the graphs of the numerical solution ψθ(·, t) at different time706

stages in Figure 9. The comparison between the learned vector field ∇ψθ(·, t) and the707
exact momentums is also provided in Figure 9. The gradient field and the momentum708

match well before t = 0.4 and after t = 0.9. This is also verified in the 1
N

∑N
k=1 |e

(k)
ti |

2-709
versus-ti plot presented in Figure 10 (right subfigure).710

(a) t = 0.1 (b) t = 0.3 (c) t = 0.5 (d) t = 0.7 (e) t = 0.9

(f) t = 0.1 (g) t = 0.3 (h) t = 0.5 (i) t = 0.7 (j) t = 0.9

Figure 9: (Up row) Graphs of the numerical solution ψθ at different time stages on
the 4th − 8th plane. (Down row) Plots of ∇ψθ(·, t) (green) with the momentum of
samples (red) at different time stages.
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(a) Example 4.2.2 (b) Example 4.2.3
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(c) Example 4.2.4

Figure 10: Plots of the loss 1
N

∑N
k=1 |e

(k)
ti |

2 versus time ti for examples 4.2.2, 4.2.3,
4.2.4.

4.2.5. Application to Linear Quadratic Control (LQC) problem with711
given terminal distribution . The Linear Quadratic Control (LQC) problem in712
Rd [27][39] is usually posed as713

min
{xτ}T

0 ,{vτ}T
0

∫ T

0

1

2
v⊤τ Rvτ +

1

2
x⊤τ Qxτ dτ +

1

2
x⊤T P1xT ,

subject to ẋτ = Axτ +Bvτ , xτ |τ=0 = x0.

(4.4)714

Here we assume that R,Q, P1 are symmetric matrices, R is positive definite, Q,P1715
are semi-positive definite. The critical point of this LQC problem solves the following716
ODE system based on the Pontryagin’s minimum principle,717

ẋτ =Axτ +Bvτ , vτ = R−1B⊤λτ , xτ |τ=0 = x0,

λ̇τ =−A⊤λτ +Qxτ , λT = −P1xT .
(4.5)718

Furthermore, we consider the value function719

u(x, t) = min
{xτ}T

t , {vτ}T
t

∫ T

t

1

2
v⊤τ Rvτ +

1

2
x⊤τ Qxτ dτ +

1

2
x⊤T P1xT720

subject to ẋτ = Axτ +Bvτ , xτ |τ=t = x,721

then one verifies that u(·, t) solves the following Hamilton-Jacobi equation with ter-722
minal condition723

∂u(x, t)

∂t
+min

v

{
∇u(x, t)⊤Bv + 1

2
v⊤Rv +∇u(x, t)⊤Ax+

1

2
x⊤Qx

}
︸ ︷︷ ︸

J(x,∇u(x))

= 0,(4.6)724

u(x, T ) =
1

2
x⊤P1x.725

The term J(x,∇u(x, t)) takes an explicit form726

J(x,∇u(x, t)) = −1

2
(B⊤∇u(x, t))⊤R−1(B⊤∇u(x, t)) +∇u(x, t)⊤Ax+

1

2
x⊤Qx.727
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The optimal control vτ is given by728

(4.7) vτ = −R−1B⊤∇u(xτ , τ).729

Now let we consider the LQC problem of a swarm of agents in which each of730
them minimizes its own control cost by resolving (4.4), while we want the terminal731
distribution formed by this swarm equals the given probability distribution ρT .732

Our method readily handles this control problem with terminal density con-733
straints. To be more specific, we consider the “time-reversal” of the Hamilton-Jacobi734
equation (4.6), i.e., we denote ũ(x, t) = u(x, T − t). This yields ∂tũ = −∂tu. Thus ũ735
solves the HJ equation with initial condition736

∂ũ(x, t)

∂t
+

1

2
(B⊤∇ũ(x, t))⊤R−1(B⊤∇ũ(x, t))−∇ũ(x, t)⊤Ax− 1

2
x⊤Qx︸ ︷︷ ︸

H(x,∇u(x))=−J(x,∇u(x))

= 0,(4.8)737

ũ(x, 0) =
1

2
x⊤P1x.738

Here we denote the Hamiltonian H(x, p) as739

H(x, p) =
1

2
(B⊤p)⊤R−1(B⊤p)− p⊤Ax− 1

2
x⊤Qx.740

We then apply our method to (4.8) coupled with the initial probability distribution741
ρ̃0 = ρT .742

Notice that the associated Hamiltonian system is743

q̇t = ∂pH(qt, pt), ṗt = −∂xH(qt, pt). with q0 ∼ ρ̃0, p0 = P1q0.744

This yields the linear ODE system745

(4.9)
˙[
qt
pt

]
=

[
−A BR−1B⊤

Q A⊤

] [
qt
pt

]
,

q0 ∼ ρ̃0,
p0 = P1q0.

746

We denote ρ̃T as the density of Law(qT ).747
It is worth mentioning that this Hamiltonian system is equivalent to the ODE748

(4.5) obtained from the Pontryagin’s minimum Principle up to the transformation749
qt = xT−t, pt = −λT−t.750

Now, recall (4.7) and ũ as the time-reversal of u, the optimal control is given by751
vτ = −R−1B⊤∇ũ(xτ , T − τ) for 0 ≤ τ ≤ T . In computation, we evaluate for the752
neural network-surrogate solution ∇ψθ ≈ ∇ũ of the HJ equation (4.8). To verify the753
accuracy of ∇ψθ, we compare the trajectory {x̂τ} under our learned control754

˙̂xτ = −Ax̂τ +BR−1B⊤∇ψθ(x̂τ , τ), x̂0 ∼ ρ0 = ρ̃T ,755

with the dynamic computed from the Pontryagin’s minimum principle (4.5).756

Inverted Pendulum Specifically, we apply our method described above to the757
inverted pendulum model [19][38]. In this example, we denote the position of the cart758
as xt, and the angle between the stick and the vertical direction as θt at time t (we759
take the counter-clockwise as the positive direction for θt). Suppose we exert a force760
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Figure 11: Illustration of inverted pendulum [3].

ut on the cart at time t, the mechanics of the cart and the stick are governed by the761
following differential equation (The equation has been linearized at θ ≈ 0, θ̇ ≈ 0.)762

ut =(M +m)ẍt −mlθ̈t763

lθ̈t =gθt + ẍt.764

This yields765

ẍt =
m

M
gθt +

ut
M

766

θ̈t =
M +m

Ml
gθt +

ut
Ml

.767

By introducing yt = ẋt, ϕt = θ̇t, we consider the following dynamics of768

Xt = (xt, yt, θt, ϕt)769

with the external force ut as the control,770

˙
xt
yt
θt
ϕt

 =


0 1 0 0
0 0 m

M 0
0 0 0 1
0 0 M+m

Ml g 0



xt
yt
θt
ϕt

+


0
1
M
0
1
Ml

 [ut]
denote as

= AXt +But.771

We wish to exert the control {ut} to this dynamics so that both the cart and the stick772
stay stably, and at the same time, minimize the effort ut paid to the control. Thus,773
we consider the following cost functional774 ∫ T

0

1

2
X⊤
t QXt +

1

2
Ru2t +

1

2
X⊤
T P1XT .775

Here we pick Q = P1 = diag(1, 0, 1, 0), R = 1. This is a optimal control prob-776
lem in 4-dimensional phase space of x, θ. We assume the terminal distribution ρT777
as N (0, σ2

xI2) ⊗ U([−θ0, θ0]) ⊗ N (0, σ2
θ̇
). That is, if (x, ẋ, θ, θ̇) ∼ ρT , then (x, ẋ) ∼778

N (0, σ2
xI2), θ ∼ U([−θ0, θ0]), θ̇ ∼ N (0, σ2

θ̇
). Here U([a, b]) denotes the uniform dis-779

tribution on the interval [a, b]. In this example, we set σx = σθ̇ = 0.2, θ0 = π
20 . We780

pick terminal T = 2. To carry out our computation, we evolve the Hamiltonian sys-781
tem (4.9) with initial samples drawn from ρ̃0 = ρT . We then apply our algorithm to782
compute for {ψθ(·, t)}0≤t≤T as the solution to the HJ equaiton (4.8).783

Moreover, upon evolving (4.9), we denote ρ̃T as the distribution of terminal par-784
ticles. We set the initial distribution of the swarm ρ0 as ρ̃T . For any samples of ρ0,785
we calculate the trajectory under our learned control {ψθ(·, t)}0≤t≤T and compare it786
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Figure 12: Plot of different trajectories under the learned control ∇ψθ(·, t) (blue) and
the corresponding trajectories under the optimal control (red). Left: plot on (x, ẋ)
plane; Right: plot on (θ, θ̇).

Figure 13: Plot of different trajectories under the learned control ∇ψθ(·, t) (blue) and
the corresponding trajectories under the optimal control (red). Left: plot of xt vs t;
Right: plot of θt vs t.

with the trajectory under the optimal control (i.e., the trajectories solved from the787
Pontryagin’s minimum principle (4.5)). The results are demonstrated in the Figure788
12 and 13.789

The L2 loss decay curve shown in Figure 14 converges exponentially to 0, sug-790
gesting that our algorithm works properly on this example.791

Two more numerical examples on Hamiltonian Jacobi equations with double well792
potential and Duffing oscillator can be found in the supplementary material.793

5. Conclusion. In this paper, we propose a supervised learning algorithm to794
compute the first-order HJ equation by the density-coupling strategy. Such treatment795
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Figure 14: Plot of L2 loss vs iteration in our training.

is inspired by the Wasserstein Hamiltonian flow, which bridges the HJ equation and its796
associated Hamiltonian ODE system. We then reformulate our method as a regression797
algorithm using the Bregman divergence. Furthermore, we provide error estimation798
on the L1 residual term for the proposed method. The efficiency of our algorithm is799
verified by a series of numerical examples.800

Multiple research directions may serve as the proceeding of this work. To name801
some of them,802

• Our method can compute the solution to the HJ equation beyond the caustics,803
which is different from the commonly considered viscosity solution [11]. Is804
it possible to modify our algorithm at points at which caustics develop to805
compute the viscosity solution of the HJ equation?806

• As mentioned in remark 2.1, our treatment leads to a new way to extend807
the classical solution of HJ equation beyond the caustics. What are the808
mathematical properties of such a solution? What is the relationship between809
this solution and the viscosity solution to the HJ equation?810

• As discussed in section 3.2, we are not able to control the residual outside811
of the support of the swarm of particles. How can we propose the initial812
distribution ρ0 such that the support of ρt covers the desired region on which813
we wish to obtain the accurate solution to the HJ equation?814

We leave these topics to be investigated in the future.815
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