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Abstract. In this paper, we propose a new method to compute the solution of time-dependent Schrödinger equation (TDSE).
Using push-forward maps and Wasserstein Hamiltonian flow, we reformulate the TDSE as a Hamiltonian system in terms of push-
forward maps. The new formulation can be viewed as a generative model in the Wasserstein space, which is a manifold of
probability density functions. Then we parameterize the push-forward maps by reduce-order models such as neural networks.
This induces a new metric in the parameter space by pulling back the Wasserstein metric on density manifold, which further results
in a system of ordinary differential equations (ODEs) for the parameters of the reduce-order model. Leveraging the computational
techniques from deep learning, such as Neural ODE, we design an algorithm to solve the TDSE in the parameterized push-forward
map space, which provides an alternative approach with the potential to scale up to high-dimensional problems. Several numerical
examples are presented to demonstrate the performance of this algorithm.
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1. Introduction. Schrödinger equation plays a fundamental role in the study of quantum physics. In
this paper, we are concerned with its numerical simulation. To better explain our objectives and ideas, we
take the following nonlinear time-dependent Schrödinger equation (TDSE) as an example:

i
∂

∂t
ψ(t, x) = −1

2
∆ψ(t, x) +

δ

δρ
FR(|ψ(t, x)|2, x) · ψ(t, x),(1.1)

where ψ is a complex-valued function defined on [0, T ] × Rd, ρ = |ψ|2, which can be viewed as a probability
density function associated with ψ, FR is a functional of ρ, and δ

δρFR is the L2 first variation of FR.
With different choices of FR, the TDSE (1.1) models various physical problems, for example, quantum

harmonic oscillator [11], many particle interaction systems [12], and Bose-Einstein condensation [1, 29], among
many others. There exists an extensive literature with many remarkable advancements on the theory, compu-
tation, and application of (1.1). However, its direct numerical simulation remains a difficult task, especially
when the dimension d is high, e.g., d ≥ 4. To mitigate the computational challenges, we introduce a novel for-
mulation that takes advantage of the most recent developments in generative models [17] from machine learning
and Wasserstein Hamiltonian flow (WHF) [10] related to optimal transport theory [39]. More specifically, there
are two main objectives in this paper:

1. Reformulate the TDSE (1.1), via the Madelung transform, as a generative model using push-forward
maps in conjunction with a WHF.

2. Propose a numerical method that applies parameterized reduced-order models, such as deep neural
networks (DNNs), to solve the generative model. The result is a system of ordinary differential
equations (ODEs) in the parameter space, which can be solved by symplectic numerical schemes.

Unlike the existing formulations of TDSEs, the derived generative model provides a dynamical description
of the push-forward maps. The induced numerical method is complementary to existing approaches and can
be used as an alternative algorithm that is cost-efficient for high-dimensional simulations.

In Section 2, we give a brief discussion of related work in the literature. We provide concise introductions
to WHF and generative models, two crucial tools used in this investigation, in Section 3. The reformulation
of TDSE into a generative model is presented in Section 4. The numerical method based on the formation
of neural networks is introduced in Sections 5 and 6. We illustrate the performance of the method by several
examples in Section 7, followed by a short discussion to conclude the paper.

2. Related work. Numerical simulations of TDSE have been conducted extensively with numerous
algorithms based on classical methods such as finite difference [15, 16, 36, 38], spectral method [4, 5], and level
set methods [22]. A survey of different numerical schemes with comprehensive comparisons on their properties
can be found in [2]. Classical methods can provide efficient and accurate solutions when the dimension is
small, i.e. d ≤ 3. However, they suffer a serious issue known as the curse of dimensionality, referring to the
exponential growth in the computational cost with respect to the dimension d, especially when d is large.
Compared to classical methods, particle dynamics-based simulations such as the quantum trajectory method
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(QTM) [38] and smooth particle hydrodynamics (SPH) [25] have been proposed. They are Monte Carlo
approaches designed using the formulation of Bohmian mechanics [6, 13, 30], which is a major source of
motivations for our investigation. For example, the SPH generates samples from the initial distribution and
simulates the sample dynamics under the quantum potential. These sample-based approaches scale well with
dimensions, but the approximation to the density function as well as its gradient evaluation remain a major
challenge in the computation.

In recent years, machine learning-based methods, such as the physcis-informed neural network (PINN) [32],
deep Ritz method (DRM) [14], weak adversarial network (WAN) [44], and many others [19, 35] have shown
promising results of using neural networks to solve partial differential equations (PDEs) in high dimensions.
Some of them have been adopted to solve Schrödinger equation. For example, PINN has been used in computing
the solution of TDSE [31, 42]. A specific class of neural networks has been proposed to represent the many-
electron wave function following the Pauli exclusion principle [20, 21, 28], which shows powerful and promising
results for estimating ground state energies in many-electron systems. More research has been reported on
the application of neural networks to simulate many body problems [8] and molecular dynamics [24]. Those
studies are among the other sources that motivated this work.

Recently, a method called Deep Stochastic Mechanics (DSM) [27], which modifies the formulations in [26]
and [18], was developed to generate samples following the time-evolving squared magnitude (density) of the
solution to TDSE. While Madelung transform induces the coupled evolution PDEs of the phase and logarithm
of density, the gradients of them satisfy a new coupled PDEs, which are solved by the PINN approach in
DSM. These gradients can add up to form the drift of a stochastic differential equation (SDE), whose sample
trajectories follow the density of TDSE. In contrast, we directly use the reformulation based on the Madelung
transform and approximate the push-forward map by solving an ODE system which is free of network training.

Our formulation and algorithm are directly inspired by recent advancements in parameterized WHF [43],
in which a numerical method based on neural network parameterization has been proposed for WHF in
conjunction with generative models. It is known that, by using Madelung transform, the TDSE can be
rewritten as a continuity equation coupled with a Hamilton-Jacobi equation, which forms a WHF. Hence, we
can apply the parameterized WHF to solve the TDSE, providing substantial new improvements to handle
the Fisher information that appeared in the Hamilton-Jacobi equation. To this end, we borrow a tool from
generative models called Neural ODE [9] that can compute Fisher information efficiently.

3. Mathematical Tools. In this section, we give concise introductions to the WHF and Neural ODE,
which are two main tools used to establish the reformulation of TDSE as generative models.

3.1. Wasserstein Hamiltonian Flow. Let M be a smooth manifold without boundary. For simplicity,
we can assumeM = Rd in our discussion. We consider the set of density functions defined onM with bounded
second moment:

P(M) =
{
ρ ∈ C∞(M) : ρ ≥ 0,

∫
M

ρ dx = 1,

∫
M

|x|2ρ dx <∞
}
.(3.1)

Given a Hamiltonian H(ρ,Φ) = 1
2

∫
M

|∇Φ|2ρ(x)dx + F(ρ) where Φ ∈ C∞ and F is an energy functional
on P(M), the WHF with Hamiltonian H is described by the following system,

∂tρ =
δ

δΦ
H(ρ,Φ),(3.2a)

∂tΦ = − δ

δρ
H(ρ,Φ),(3.2b)

with initial values

(3.3) ρ(0, x) = ρ0(x) and Φ(0, x) = Φ0(x).

Many classical PDEs can be formulated as WHF with different energy functionals F [10]. The Schrödinger
equation is among them. More details are given next.

3.2. Schrödinger equation and Madelung transform. Consider the Madelung transform

ψ(t, x) =
√
ρ(t, x)eiΦ(t,x),(3.4)

which is a nonlinear symplectic transform mapping a complex-valued wave function to the pair of real-valued
functions (ρ,Φ), see [33] for more details. Using the Madelung transform, the Schrödinger equation (1.1) can
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PARAMETERIZED SCHRÖDINGER EQUATION 3

be reformulated as the following Madelung system by plugging (3.4) into (1.1) and matching the real and
imaginary parts on its two sides:

∂tρ+∇ · (ρ∇Φ) = 0,(3.5a)

∂tΦ+
1

2
|∇Φ|2 = − δ

δρ
FR(ρ) +

1

2

∆
√
ρ

√
ρ
,(3.5b)

with initial values ρ(0, x) = |ψ(0, x)|2 and Φ(0, x) being the phase of ψ(0, x) at every x ∈ M . Due to the
Madelung transform, we assume ρ > 0 almost everywhere in M for any time t hereafter.

Remark 3.1. We always assume that Φ in (3.5) is single-valued, thereby eliminating the potential inequiv-
alence between the Schrödinger equation and the Madelung system [41]. For more detailed discussions, we
refer the reader to [41, 27] and the references therein.

From the perspective of Lagrangian mechanics on the density manifold P(M), the Schrödinger equation
arises as the critical point of an action functional [23]. Furthermore, an optimal transport approach was
proposed in [40] to interpret the Madelung system (3.5) as the Hamiltonian flow (3.2) associated with the
following Hamiltonian:

H(ρ,Φ) =

∫
Rd

1

2
|∇Φ(x)|2ρ(x)dx+ FR(ρ) +

1

8
FQ(ρ),(3.6)

where the last term FQ =
∫
Rd |∇ log ρ(x)|2ρ(x)dx is known as the Fisher information in the context of quantum

mechanics [34], and its L2 first variation is the quantum potential [7]:

δ

δρ
FQ(ρ, x) = −2∆ log ρ− |∇ log ρ|2 = −4

∆
√
ρ

√
ρ
.(3.7)

Our reformulation of (1.1) as a generative model is based on its WHF formulation (3.5).

3.3. Neural ODE. Generative models in machine learning include a large class of algorithms that aim
to map samples from an initial distribution with density λ to samples of a target distribution with density µ.
It is often easy to obtain samples from the initial distribution such as Gaussian while difficult to sample from
the target one, about which only partial information is accessible. Well-known examples of generative models
include generative adversarial nets (GAN) [17], Wasserstein GAN (WGAN) [3], and diffusion generative model
[37]. A key component of a generative model is a push-forward map T : Rd → Rd defining a correspondence
between samples z → T (z) where z is sampled from λ, denoted by x ∼ λ. The map T induces a push-forward
distribution with density T♯λ through∫

E

T♯λ(x) dx =

∫
T−1(E)

λ(z) dz for any measurable set E ⊂ Rd,

where T−1(E) is the pre-image of E. Correspondingly, we also have the change of variable formula to explicitly
evaluate the induced push-forward density:

T♯λ(z) = λ ◦ T−1(z) det
( d
dz
T−1(z)

)
∀z ∈ Rd.(3.8)

In a generative model, T is realized by a neural network and it is desirable to achieve T♯λ = µ.
To reformulate the Schrödinger equation (1.1) in a generative model, we select a special type of neural

network called Neural Ordinary Differential Equations (Neural ODE) as the push-forward map T . Neural
ODE was first proposed in [9]. It is defined through the solution map of a parameterized ODE. More precisely,
let [0, t∗] be a fixed time interval and fθ : Rd → Rd be a neural network with parameters θ ∈ Θ ⊂ Rm (m is
the number of parameters in fθ), the push-forward map given by the neural ODE is defined as Tθ(z) = w(t∗),
where w(t) satisfies

(3.9) ẇ(t) = fθ(w(t)), w(0) = z,

It is shown in numerous studies that Neural ODE has many desirable properties like strong approximation
power and efficient implementations. More importantly, we select Neural ODE because it is easily invertible due
to the uniqueness of the solution for the ODE (3.9), and the logarithmic density function can be conveniently
evaluated through the adjoint equation [9]. Both features are crucial for us to express (1.1) as a continuous-
time push-forward map and compute the Fisher information term appeared in (3.7). A brief discussion on
how to implement the Fisher information term through Neural ODE is provided in Appendix A.
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4 H. WU, S. LIU, X. YE, AND H. ZHOU

4. Expressing the Schrödinger equation by push-forward map. In this section, we present the
reformulation of the TDSE (1.1) in terms of time-dependent push-forward map T .

Let λ > 0 be the density of a reference distribution on Rd. We define

O = {T ∈ L2(Rd;Rd, λ) : T is diffeomorphism from Rd to Rd.}(4.1)

as the space of diffeomorphisms. We denote TTO := C∞(Rd;Rd)
⋂
L2(Rd;Rd, λ) as its tangent space at T .

For any T ∈ O and σi ∈ TTO (i = 1, 2), we define a metric G on the tangent bundle T O as

G(T )(σ1, σ2) =
∫
σ1(z)

⊤σ2(z)λ(z) dz.(4.2)

Then, we introduce a Lagrangian L defined on T O as

L(T, σ) =
1

2
G(T )(σ, σ)−F(T♯λ).(4.3)

Now, for a time-dependent curve {Tt} (0 ≤ t ≤ t0) on O, we denote Ṫt =
dTt

dt ∈ TTtO as the time derivative
of Tt at t, and denote F(ρ) = FR(ρ) + 1

8FQ(ρ). In order to introduce the Hamiltonian flow on O, we first
consider the stationary point associated with the following action functional I : O0,t0 → R

I({Tt}) =
∫ t0

0

L(Tt, Ṫt) dt, {Tt} ∈ O0,t0 ,(4.4)

where we define O0,t0 as the set of smooth paths {Tt}0≤t≤t0 on O with T0♯λ = ρ0 and Tt0♯λ = ρt0 . Here, ρ0, ρt0
are the density functions obtained by the Madelung transform (3.5) from the wavefunction ψ(t, x) at t = 0
and t = t0 respectively. The stationary point associated with (4.4), if it exists, satisfies the Euler–Lagrange
equation, as stated in the following theorem. For brevity, we omit the subscript t and use T and Ṫ to denote
Tt and Ṫt, respectively, in the following discussion.

Theorem 4.1 (Hamiltonian system in the space of diffeomorphisms). The critical point of (4.4), if exists,
satisfies

T̈ (z) = −∇X
δ

δρ
F(T♯λ(·), ·) ◦ T (z).(4.5)

Equivalently, by introducing the momentum Λ := ∂L(T,Ṫ )

∂Ṫ
= λṪ , equation (4.5) can also be written as a first

order Hamiltonian system

d

dt
T =

1

λ
Λ,

d

dt
Λ = −∇X

δ

δρ
F(T♯λ(·), ·) ◦ T (z)λ(z),

(4.6)

with Hamiltonian H(T,Λ) = G(T )(Ṫ , Ṫ )−L(T, Ṫ ) = 1
2G(T )(

1
λΛ,

1
λΛ)+F(T♯λ). Furthermore, the push-forward

density T♯λ solves the WHF (3.2) whose Hamiltonian is given by (3.6).

Proof. For convenience, we denote F(T ) := F(T♯λ). Following the definition of L(T, Ṫ ) in (4.3), we have

L(T, Ṫ ) =
1

2
G(T )(Ṫ , Ṫ )− F(T ),(4.7)

The Euler-Lagrange equation satisfied by the critical point of (4.4) is

δ

δT
L(T, Ṫ ) =

d

dt

δ

δṪ
L(T, Ṫ ).(4.8)

Let us first examine its right-hand side. Following the definition given in (4.2), we note that the metric G is
the same for all T , implying that G is independent of T . This leads to δ

δṪ
L(T, Ṫ ) = Ṫ (z)λ(z). Hence we have

d

dt

δ

δṪ
L(T, Ṫ ) = T̈ (x)λ(z).(4.9)
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We next compute the left-hand side of (4.8). Since the metric is independent of T , we have δ
δT L = − δ

δT F. In
the following, we calculate δ

δT F(T ).
Let S ∈ O be arbitrary and define TSε (x) to be the solution X(ε) of the ODE:

(4.10)

{
X ′(t) = (S ◦ T−1)(X(t)), 0 ≤ t ≤ ε,

X(0) = x = T (z) ∼ T♯λ,

at the end time t = ε, where z ∼ λ. In addition, TSε is a variation of T equivalent to T + εS up to the first
order because for any z there are X(0) = x = T (z) and

X(ε) = X(0) +X ′(0)ε+ o(ε)

= x+ (S ◦ T−1)(x)ε+ o(ε)

= T (z) + εS(z) + o(ε)

= (T + εS)(z) + o(ε).

We call ρt the density of X(t) for 0 ≤ t ≤ ε. Then the continuity equation of ρt corresponding to (4.10) is

(4.11)

{
∂tρt(x) +∇X · [ρt(x)(S ◦ T−1)(x)] = 0, 0 ≤ t ≤ ε,

ρ0 = T♯λ.

Now we derive the L2 first-variation δ
δT F(T ). We have〈 δ

δT
F(T ), S

〉
=

d

dε
F(TSε )

∣∣∣
ε=0

=
d

dε
F(TSε ♯λ)

∣∣∣
ε=0

= lim
ε→0

∫
δ

δρ
F(ρ0)(x)

ρε(x)− ρ0(x)

ε
dx

=

∫
δ

δρ
F(ρ0)(x)∂tρε(x)

∣∣∣
ε=0

dx.

By the continuity equation (4.11), we know

∂tρε(x)
∣∣
ε=0

= −∇ · [ρ0(x)(S ◦ T−1)(x)].

Therefore 〈 δ

δT
F(T ), S

〉
=

∫
δ

δρ
F(ρ0)(x)

(
−∇X · [ρ0(x)(S ◦ T−1)(x)]

)
dx

=

∫
∇X

δ

δρ
F(ρ0)(x)(S ◦ T−1)(x)ρ0(x) dx

=

∫
∇X

δ

δρ
F(T♯λ)(T (z))S(z)λ(z) dz,

where the last equation is due to the change of variable x = T (z). Since S is arbitrary, we must have

δ

δT
F(T ) = ∇X

δ

δρ
F(T♯λ)(T (z))λ(z).

This leads to

δ

δT
L(T, Ṫ ) = − δ

δT
F(T ) = −∇X

δ

δρ
F(T♯λ(·), ·) ◦ T (z)λ(z).

Hence, the Euler-Lagrange equation (4.8) becomes

d

dt

(
Ṫ (z)λ(z)

)
= ∇X

δ

δρ
F(T♯λ(·), ·) ◦ T (z)λ(z)(4.12)

Since λ(z) > 0 for all z ∈ Rd, this proves (4.5).
Following Proposition 2 in [10], we know that the push-forward density T♯λ satisfies the WHF (3.2), which

gives (4.6). This completes the proof.

This manuscript is for review purposes only.



6 H. WU, S. LIU, X. YE, AND H. ZHOU

For convenience, we call the equation (4.5) or system (4.6) the generative model reformulation of TDSE
(1.1). We would like to mention that the derivation of (4.5) is also inspired by the Bohmian mechanics [7],
which aims at describing the particle dynamics governed by the Schrödinger equation. More precisely, each
particle X moves according to a dynamical system

Ẍ = −∇X
δ

δρ
F(ρ,X),(4.13)

assisted by the guiding function ρ, which is obtained by the Schrödinger equation and Madelung transform.
Clearly, equations (4.13) and (4.5) share similarities in their formulation. However, they have significant
distinctions. By definitions, we see that the system (4.5) is defined in the space of diffeomorphisms O while
the equation (4.13) is defined in Rn. More importantly, the operator equation (4.5) is self-contained. Its
trajectory is fully determined if the initial conditions of T and Λ are given. This implies that it can produce
particle motions as well as density maps at the same time once Tt is known. In sharp contrast, (4.13) is
not self-contained. It requires extra knowledge of the guiding function ρ to fully determine the motions of
the particles. It is worth noting that investigating the well-posedness of the operator equation (4.5) and the
Vlasov-type ODE (4.13) lies beyond the scope of this study and is left as a potential direction for future
research.

To further digest the system (4.6), we consider its implication in the energy eigen-state. In this case,
the generative model (4.6) reduces to a trivial (constant) solution in the space of diffeomorphisms O. More
precisely, at the energy eigen-state ψ0(t, x) = e−iE0t

√
ρ0(x) with eigen-energy E0, ϕ(x) =

√
ρ0(x) solves

E0ϕ(x) = −1

2
∆ϕ(x) +

δ

δρ
FR(|ϕ(x)|2, x) · ϕ(x).(4.14)

By (3.7) and assuming ϕ > 0, we have

δ

δρ
FQ(ρ0, x) = −2∆ log(ϕ2)− |∇ log(ϕ2)|2

= −4
ϕ∆ϕ− |∇ϕ|2

ϕ2
− 4|∇ϕ

ϕ
|2

= −4
∆ϕ

ϕ
,

Together with (4.14), we have

δ

δρ
F(ρ0, x) =

δ

δρ
FR(ρ0, x) +

1

8

δ

δρ
FQ(ρ0, x)

=
E0ϕ(x) +

1
2∆ϕ(x)

ϕ
+

1

8
(−4

∆ϕ

ϕ
)

= E0

Hence (4.5) becomes

T̈ = −∇XE0 = 0.(4.15)

This corresponds to a trivial solution in the space of diffeomorphisms (constant speed).

5. Parameterized generative model of TDSE. The generative model for TDSE (4.6) is formulated
in the space of diffeomorphisms O and its tangent bundle, which are infinite dimensional spaces. To simulate
its solution, we must approximate it in a finite dimensional space. To this end, we follow the ideas proposed
in the parameterized WHF (PWHF) [43].

Instead of arbitrary T ∈ O, we restrict the consideration in a subspace of O in which each T can be
parameterized by θ, denoted as Tθ. There may be different choices for Tθ, such as finite element or Fourier
approximations. In this study, we choose neural networks, especially the Neural ODEs described in Section 3.
In other words, O is replaced by Oθ = {Tθ : θ ∈ Θ ⊂ Rm} in the problem setting in Section 4. The tangent
space of Oθ is TθO = span{∂θkTθ : k = 1, · · · ,m}; the metric (4.2) becomes

G(θ) =

∫
∂θTθ(z)

⊤∂θTθ(z)λ(z) dz;(5.1)

This manuscript is for review purposes only.



PARAMETERIZED SCHRÖDINGER EQUATION 7

and the Lagrangian in the parameter space Θ is reformulated to

(5.2) L(θ, θ̇) =
1

2
θ̇⊤G(θ)θ̇ − F (θ),

where F (θ) := F(ρθ). Hence the variational formulation (4.4) is reduced to

IΘ(θ) = inf
θ

{∫ t0

0

L(θ(t), θ̇(t))dt : ρθ(0) = ρ0, ρθ(t0) = ρt0

}
.(5.3)

Mimicking the derivation of PWHF as detailed in [43], we obtain the parameterized generative model for
TDSE (4.6).

Proposition 5.1. The critical point of IΘ(θ) defined in (5.3) satisfies a Hamiltonian system

θ̇ = G†p,(5.4a)

ṗ =
1

2
[(G†p)⊤(∂θkG)G

†p]mk=1 −∇θF (θ),(5.4b)

where G† is the Penrose-Moore pseudo inverse of G. The corresponding Hamiltonian is

H(θ, p) =
1

2
p⊤Ĝ†(θ)p+ F (θ).(5.5)

Solving (5.4) can provide an approximate solution Tθ(t) to the original flow (4.5) defined in the space
of diffeomorphisms O. This further gives the approximate density ρθ = Tθ♯λ in P(M). Similarly, we can
approximate ∇Φ(t, x) by ∂θTθ(t)◦T−1

θ(t)(·)p(t). Together, they form the foundation for our algorithm to compute

the parameterized generative model for TDSE.

6. Numerical algorithm. To simulate the parameterized generative model of TDSE (5.4), we suggest
the numerical method presented in Aglorithm 6.1, which is based on a semi-implicit symplectic Euler scheme
proposed in [43]. Here we omit its details.

Algorithm 6.1 Parameterized TDSE solver

Initialize neural network Tθ with parameters θ0 at t = 0.

Initialize p0 = ∇θEz∼λ[Φ(0, Tθ(z))] with Φ(0, x) = −i log ψ(0,x)
|ψ(0,x)| .

Set terminal time t1, number of steps K and fixed point iteration rate γ, define the step size as h = t1/K.
for l = 0, · · · ,K − 1 do
Sample {z1, · · · , zN} from λ, and compute Xi = Tθl(zi) as well as ρθl(xi) = Tθl♯λ(xi)
Apply MINRES to solve ξl,0 from equation G(θl)ξ = pl, set αl,0 = θl

for j = 1, · · · , nin do
Update αl,j = θl + hξl,j

Update ξl,j+1 = ξl,j − γ(G(αl,j)ξl,j − pl)
end for
Set θl+1 = αl,nin , ηl+1 = ξl,nin

Compute X l+1
i = Tθl+1(zi) as samples from ρθl+1 , evaluate ∇θF (θ

l+1) through samples {X l+1
i }

Set pl+1 = pl + h
2 [(η

l+1)⊤∂θkGη
l+1]mk=1 − h∇θF (θ

l+1)
end for
Output: Solution at discrete time spots: (θ(lh) := θl, p(lh) := pl) for l = 0, . . . ,K.

Algorithm 6.1 has several important features. First, the algorithm does not require spatial discretization
or basis, and is sampling-based and can be executed as long as samples {z1, · · · , zN} from the reference
distribution are available.

This is a particularly important and the main reason that Algorithm 6.1 can scale up to high-dimensional
cases. In practice, samples from the reference distribution can be taken from the same or different sets at each
time step. Second, the parameters θ are computed by iterative methods for linear least squares problems. This
is different from typical network training where the parameters are solved from challenging large-scale non-
convex optimization problems. In particular, Algorithm 6.1 can be implemented without explicitly creating
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the matrix G, because it only requires matrix vector multiplication. The minimal residual (MINRES) method
is chosen for convenience. It can be replaced by other numerical solvers as long as the least-squares solution for
the linear system can be obtained efficiently. Third, compared to the algorithm proposed in [43], we develop a
new approach to evaluate the Fisher information appeared in F (θ) by leveraging the properties of the Neural
ODE Tθ. A detailed PyTorch-based algorithm is given in Appendix A.

There are many options to initialize θ0 in Algorithm 6.1 depending on the problem settings. We can select
Tθ0 the identity map if ρ0 is the same as the reference density, or samples at t = 0 are given. In the latter
case, the algorithm can be carried out without the reference distribution. In general, we can initialize θ0 by
minimizing the difference between ρθ0 and ρ0, for example,

θ0 = argmin
θ

{DKL(ρ0∥ρθ)},

where DKL stands for the Kullback-Leibler divergence between two probability densities. Other distance or
divergence can be used as well. Once ρ0 is available, p0 can be initialized by ∇θEz∼λ[Φ(0, Tθ(z))], where the
initial phase Φ(0, x) is obtained through the Madelung transform.

7. Numerical results. In this section, we present three examples to demonstrate the performance of the
proposed formulation and algorithm. The first is the quantum harmonic oscillator; the second is the Gross-
Pitaevskii equation (GPE); and the third is a three-particle system. We focus on their numerical simulations.
Our computation is carried out on a desktop computer with an NVIDIA RTX-4080s GPU (16 GB memory)
and CUDA enabled.

7.1. Coherent state solution to the quantum harmonic oscillator. Although the appearance of
the parameterized system (5.4) is different from the TDSE given in (1.1), it can be verified that they are
theoretically equivalent in some simplified situations. For example, let us consider the linear Schrödinger
equation with quadratic potential

i∂tψ = −1

2
∆ψ +

x2

2
ψ, x = (x1, x2) ∈ R2,(7.1)

ψ(0, x) =
1

π1/4
exp

(
−1

2

[
(x1 −

√
2)2 + x22

]
+ i

√
2x2

)
.(7.2)

This equation (7.1) is known as the quantum harmonic oscillator whose coherent state solution can be verified
analytically as

ψ(t, x) =
1

π1/4
exp

(
−1

2
|x−

√
2α(t))|2 + i

√
2β(t)⊤x+ ic(t)

)
,(7.3)

where α(t) = (cos t, sin t)⊤, β(t) = (− sin t, cos t)⊤, and c(t) is a time dependent function satisfying c(0) = 0.
If we select an affine transformation as the push-forward map, i.e.,

Tθ(z) = A(t)z + b(t), with parameters θ(t) = (A(t), b(t)), A(t) ∈ Rd×d, b(t) ∈ Rd,(7.4)

and set the reference density λ as

λ(z) =
1√
π
exp

(
−|z|2

)
,(7.5)

the system for the parameters (5.4) becomes

Ä(t) = −∇A

(
1

4
Tr
[
A(t)⊤A(t) +A(t)−⊤A(t)−1

])
, b̈(t) = −∇b

(
1

2
b(t)⊤b(t)

)
,(7.6a)

A(0) = Id×d, Ȧ(0) = 0d×d, b(0) = (
√
2, 0)⊤, ḃ(0) = (0,

√
2)⊤.(7.6b)

Its solution can be verified as

A(t) = Id×d, b(t) =
√
2α(t).(7.7)

Plugging (7.7) into (3.8), we get the parameterized density function

ρθ(x) =
1√
π
exp

(
−|x−

√
2α(t)|2

)
,(7.8)
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which equals to the density function given by the true solution (7.3).
We use Algorithm 6.1 to solve the parameter ODEs (7.6) for d = 2. A total of N = 20, 000 samples are

used in the calculation. The matrix A(t) remains as an identity and the vector b(t)− b(0) is depicted in Figure
1. Clearly, the numerical solution coincides with the exact solution as our analysis suggested in this example.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2.5

2.0

1.5

1.0

0.5

0.0

Fig. 1: The blue curve shows the trajectory of b(t)− b(0) for the harmonic oscillator with quadratic potential
example (7.6).

7.2. Gross-Pitaevskii equation. The Gross-Pitaevskii equation (GPE) is

i
∂

∂t
ψ(t, x) = −1

2
∆ψ(t, x) + V (x)ψ(t, x) + γ|ψ(t, x)|2ψ(t, x),(7.9)

where γ ∈ R is a constant. The GPE is a special case of the TDSE (1.1) if taking FR(ρ) =
∫
V (x) ρ(x)dx +

γ
2

∫
ρ(x)2dx. When V (x) ≡ 0, d = 1, γ = −2, the GPE (7.9) admits a set of solutions with explicit expression

given by

ψ(t, x) =
√
µ/2 exp

(
i

[
1

2
vx+

1

2
(µ− 1

4
|v|2)t

])
sech

(
√
µ(x− 1

2
vt)

)
,(7.10)

where v ∈ R, µ ∈ R+ are constants and sech(y) = 2ey

e2y+1 .
Now we apply Algorithm 6.1 to the GPE (7.9) whose exact solution is given by (7.10). We use Neural-

ODE architecture to parameterize the push-forward map. The right-hand side of the Neural-ODE consists
of two hidden layers, each containing 50 neurons and the hyperbolic tangent as the activation function. We
generate 10, 000 samples for the computation of G metric and potential energy F . The time step size is taken
as h = 0.005 unless otherwise stated. We compute the solutions for θ(t) and use the push-forward Tθ(t) to
generate samples for ρθ(t). The initial condition is taken from (7.10) with t = 0. In Figure 2, we compare the
analytical solution for ρ(t) (blue curve) with the histogram generated by Tθ(t) (orange bars) at different time
snapshots. The computed solution matches the analytic solution well.

In the next two experiments, we apply Algorithm 6.1 to solve the GPE in d = 3 and d = 6, respectively.
We also set V (x) ≡ 0, γ = −2 in both experiments. The initial values are taken as the same as d = 1 with
dimension adjustments. Figure 4 shows the histograms for the first components of the samples generated by
the push-forward map Tθ in the d = 3 case. Similarly, the histograms are plotted in Figure 5 for d = 6. We
also plot the center of distribution as a function of time in Figure 3 for the d = 3 experiment.
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(a) t = 0
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True solution
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(b) t = 0.25

4 6 8 10 12
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True solution
Sample historgram

(c) t = 0.5

4 6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

0.6
True solution
Sample historgram

(d) t = 0.75

4 6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

0.6
True solution
Sample historgram

(e) t = 1

4 6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

0.6
True solution
Sample historgram

(f) t = 1.25

Fig. 2: Sample histogram of computed ρθ at different time t for 1D (d = 1) GPE.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
time t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 mean x1
1

Fig. 3: Center of samples for the GPE with d = 3. The orange curve is the analytical values, the blue curve
are obtained by samples generated by the push-forward Tθ(t).

7.3. TDSE for system with three interactive-particles. Finally, we present a numerical example
of solving a system with three interactive-particles. We consider the three particles in a 3D space, with the
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(f) t = 1.25

Fig. 4: Sample histogram of computed ρθ at different time t for 3D GPE.

origin exerting an attractive force on each of them. We set the potential FR to be

FR(ρ) =
∫∫∫ −∑

k

3

ϵ+ |zk|
+
∑
k<j

1

ϵ+
∣∣zk − zj

∣∣
 ρ(z1, z2, z3)dz1dz2dz3,(7.11)

where zk := (x3k−2, x3k−1, x3k)
⊤ ∈ R3 for k = 1, 2, 3, ϵ is a small positive number which is set to 0.005 in our

computation, and | · | is the l2 norm in Euclidean space. The L2 first variation of FR is:

δ

δρ
FR(ρ) = −

∑
k

3

ϵ+ |zk|
+
∑
k<j

1

ϵ+
∣∣zk − zj

∣∣ .(7.12)

The corresponding TDSE in the wavefunction form is:

i
∂

∂t
ψ(t, x) = −1

2
∆ψ(t, x) +

−∑
k

3

ϵ+ |zk|
+
∑
k<j

1

ϵ+
∣∣zk − zj

∣∣
 · ψ(t, x).(7.13)

We want to generate sample trajectories following the density function ρt(x1, . . . , x9) corresponding to the
solution of (7.13).

In our simulation, the initial density function is taken as a Gaussian in R9:

ρ0(z1, z2, z3) =
1

(
√
2π)9

exp
(
− 1

2

[
|z1 − c1|2 + |z2 − c2|2 + |z3 − c3|2

] )
(7.14)

This manuscript is for review purposes only.



12 H. WU, S. LIU, X. YE, AND H. ZHOU

10 8 6 4 2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a) t = 0

10 8 6 4 2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(b) t = 0.25

10 8 6 4 2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(c) t = 0.5

10 8 6 4 2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(d) t = 0.75

10 8 6 4 2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(e) t = 1

10 8 6 4 2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(f) t = 1.25

Fig. 5: Sample histogram of computed ρθ at different time t for 6D GPE.

where c1 = (1, 0, 0), c2 = (0, 1, 0), c3 = (0, 0, 1). We take the initial Φ0 as:

Φ0(x) =
x22 − x23

(x22 + x23)
0.4

+
x26 − x24

(x24 + x26)
0.4

+
x27 − x28

(x27 + x28)
0.4
.(7.15)

Again we use the same Neural-ODE architecture for GPE in Section 7.2, consisting of two hidden layers,
each containing 50 neurons, with the hyperbolic tangent as the activation function. We generate 12, 000
samples for the computation of the operator G while 3, 000, 000 samples are used to estimate the potential
energy F . These choices are intuitively set according to the computation complexities of estimating G and F ,
which are quadratic and linear with respect to the number of samples, respectively. The time step size is set
as h = 0.001. We plot the histogram of x1 versus time in Figure 6.

In Figure 7, we plot the trajectories of an example triple (z1(t), z2(t), z3(t)) where zk(t) ∈ R3 for k = 1, 2, 3
and (z1(0), z2(0), z3(0)) is randomly sampled from the initial distribution. We also plot in Figure 8 the time
evolution of the kinetic energy (orange), interactive potential FR(ρ) (blue), and the Hamiltonian (green) in
the simulation. The algorithm preserves the Hamiltonian up to time t = 3 in this 9D example.

8. Conclusion. We propose a reformulation of TDSE (1.1) in terms of push-forward map inspired by
strategies developed for the generative model. This is accomplished by viewing TDSE as a Wasserstein
Hamiltonian flow in the probability density manifold via the Madelung transform. Unlike the traditional
wavefunction formulation of TDSE or Bohmian mechanics, the new formulation describes the dynamics in
the space of diffeomorphisms. A main benefit is its convenience in handling the density evolution and the
particle dynamics in a single closed system. Using the properties of Neural-ODE, we derived the corresponding
equations in the parameter space of the neural network and designed an algorithm to simulate the solutions
numerically. The algorithm provides an alternative to the existing methods. Since it works on samples
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Fig. 6: Sample histogram of computed ρθ at different time t for 9D TDSE.
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Fig. 7: Trajectories of an example triple (z1(t), z2(t), z3(t)) ∈ R9 with zk(t) = (x3k−2(t), x3k−1(t), x3k(t)) ∈ R3

for k = 1, 2, 3 at different time slots t for the interactive system experiment which is a 9D TDSE.
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Fig. 8: Evolution of the kinetic energy, interactive potential, and Hamiltonian in the numerical simulation for
the 9D interactive system example.

and neural network parameter space, it is computationally friendly to problems in high dimensions. We
demonstrated its performance in various problems including a 9D particle system simulation on a desktop. It
is also worth mentioning that the simulations are done by the traditional ODE solvers, and there is no data
needed to train the neural network.

Meanwhile, the reformulation of the TDSE in the generative model invites a number of interesting ques-
tions. For example, how do we theoretically understand and analyze the dynamics in terms of the push forward
map? Can we design new neural network structures to capture the dynamics more efficiently? What is the
dependence of computational accuracy on the network structure (including the depth, width, and activation
functions) and the sample size used in the calculation of G and F? Can the error be bounded theoretically in
Wasserstein metric? Those are among a long list of questions that are worth exploring in future studies.
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Appendix A. Evaluation of Fisher information.
We denote x = Tθ(z) and consider evaluating the parameterized Fisher information:

FQ(θ) = FQ(ρθ) =
1

8

∫
Rd

|∇x log ρθ(x)|2ρθ(x)dx =
1

8

∫
Rd

|∇x log ρθ(Tθ(z))|2λ(z)dz.(A.1)

The gradient of log density term needs careful treatment, since log ρθ◦Tθ(·) is a function of z while the gradient
is taken with respect to x. The following algorithm is designed to compute (A.1) efficiently with PyTorch:

Algorithm A.1 Compute Fisher information

Define a reference density λ, and a reversible neural network Tθ(z).
Generate samples {z1, · · · , zN} from λ, and compute xi = Tθ(zi).
Detach {xi}Ni=1 from computational graph and set {xi}Ni=1 as leaf variable by enabling requires gradient
property.
Construct a function h(x) = log ρθ ◦ Tθ ◦ T−1

θ (x). h(x) is a function of x = Tθ(z) with traced gradient
computation.
Take the gradient of

∑N
i=1 h(xi) with respect to {xi}Ni=1, which gives {∇xih(xi) = ∇xi log ρθ(xi)}Ni=1.

Compute the empirical Fisher information F̂Q(θ) =
1

8N

∑N
i=1|∇xi

h(xi)|2.
Compute ∇θF̂Q(θ) using backpropagation.

Output: empirical Fisher information F̂Q(θ) and its gradient ∇θF̂Q(θ).

In our experiments, Neural-ODE is used as the push-forward map, since it provides an efficient evaluation
of T−1

θ and log ρθ ◦ Tθ(·). T−1
θ can be constructed simply by reversing the time evolution of the ODE, and

log ρθ ◦ Tθ(·) can be computed using the instant change of variables formula in [9].
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