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NEURAL PARAMETRIC FOKKER--PLANCK EQUATION\ast 
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Abstract. In this paper, we develop and analyze numerical methods for high-dimensional
Fokker--Planck equations by leveraging generative models from deep learning. Our starting point is
a formulation of the Fokker--Planck equation as a system of ordinary differential equations (ODEs)
on finite-dimensional parameter space with the parameters inherited from generative models such
as normalizing flows. We call such ODEs neural parametric Fokker--Planck equations. The fact
that the Fokker--Planck equation can be viewed as the L2-Wasserstein gradient flow of Kullback--
Leibler (KL) divergence allows us to derive the ODEs as the constrained L2-Wasserstein gradient
flow of KL divergence on the set of probability densities generated by neural networks. For numerical
computation, we design a variational semi-implicit scheme for the time discretization of the proposed
ODE. Such an algorithm is sampling-based, which can readily handle the Fokker--Planck equations
in higher dimensional spaces. Moreover, we also establish bounds for the asymptotic convergence
analysis of the neural parametric Fokker--Planck equation as well as the error analysis for both
the continuous and discrete versions. Several numerical examples are provided to illustrate the
performance of the proposed algorithms and analysis.
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1. Introduction. The Fokker--Planck equation is a parabolic partial differential
equation (PDE) that plays a crucial role in stochastic calculus, statistical physics, bi-
ology, and many other disciplines [44, 55, 59]. Recently, it has seen many applications
in machine learning as well [39, 52, 64]. The Fokker--Planck equation describes the
evolution of probability density of a stochastic differential equation (SDE). In this
paper, we mainly focus on the following linear Fokker--Planck equation:

\partial \rho (t, x)

\partial t
=\nabla \cdot (\rho (t, x)\nabla V (x)) +D\Delta \rho (t, x), \rho (0, x) = p(x),(1.1)

where x \in \BbbR d, V : \BbbR d \rightarrow \BbbR is a given potential function, D > 0 is a diffusion coefficient,
and p(x) is the initial (or reference) density function. In numerical algorithms, there
exist several classical methods [54] such as finite difference [14] or finite element [29]
for solving the Fokker--Planck equation. Most of the existing methods are grid based,
which may be able to approximate the solution accurately if the grid sizes become
small. However, they find limited usage in high-dimensional problems, especially for
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1386 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

d > 3, because the number of unknowns grows exponentially fast as the dimension
increases. This is known as the curse of dimensionality. The main goal of this paper
is providing an alternative strategy, with provable error estimates, to solve high-
dimensional Fokker--Planck equations.

1.1. Neural parametric Fokker--Planck equation. To overcome the chal-
lenges imposed by high dimensionality, we leverage the generative models in machine
learning [58] and a new interpretation of the Fokker--Planck equation in the theory
of optimal transport [68]. We first introduce the Kullback--Leibler (KL) divergence,
also known as relative entropy, defined by

\scrD KL(\rho | | \rho \ast )=
\int 

\BbbR d

\rho (x) log

\biggl( 
\rho (x)

\rho \ast (x)

\biggr) 
dx, \rho \ast (x)=

1

ZD
e - 

V (x)
D , with ZD=

\int 

\BbbR d

e - 
V (x)
D dx.

Here \rho \ast (x) is the Gibbs distribution. A well-known fact is that the Fokker--Planck
equation (1.1) can be viewed as the gradient flow of the functional D \scrD KL(\rho | | \rho \ast )
on the probability space \scrP equipped with Wasserstein metric gW [23, 46]. Recently,
this line of research was extended to parameter space in the field of information
geometry [2, 3, 6], leading to an emergent area called transport information geometry
[33, 38, 36, 37].

Inspired by the aforementioned works, we study the Fokker--Planck equation de-
fined on parameter manifold (space) \Theta \subset \BbbR m equipped with metric tensor G, which
is obtained by pulling back the Wasserstein metric gW to \Theta . Here the metric tensor
G can be viewed as an m\times m matrix that contains all the metric information on \Theta .
In this paper, we focus on the parameter space from generative models using neu-
ral networks. Our train of thought can be summarized as following. We start with
a given reference distribution p and consider a suitable family of parametric maps
\{ T\theta \} \theta \in \Theta . Such T\theta : \BbbR d \rightarrow \BbbR d is also called a parametric pushforward map since it
generates a family of parametric distributions \{ T\theta \sharp p\} by pushing p forward using T\theta 
(see Definition 3.2). Then we consider the map T(\cdot )\sharp : \Theta \rightarrow \scrP , \theta \mapsto \rightarrow T\theta \sharp p, which can
be treated as an immersion from the parameter manifold \Theta to the probability man-
ifold \scrP . We derive the metric tensor G(\theta ) by pulling back the Wasserstein metric
via T(\cdot )\sharp . Once establishing (\Theta , G), we can compute the G-gradient flow of function
H(\theta ) = D \scrD KL(T\theta \sharp p | | \rho \ast ) defined on the parameter manifold. This leads to an ODE
system that can be viewed as a parametric version of the Fokker--Planck equation:

(1.2) \.\theta t =  - G(\theta t) - 1\nabla \theta H(\theta t).

Here (and for the rest of the paper) the dot symbol \.\theta stands for time derivative
d\theta t
dt . Using the pushforward \rho \theta = T\theta \sharp p, in which \theta is the solution of (1.2), we can
approximate the solution \rho t in (1.1).

There are many potential applications for the parametric Fokker--Planck equation.
For example, the solution of (1.2) can be immediately used for sampling, which is a
crucial task in statistics and machine learning. To be more precise, if the goal is draw-
ing a large number of samples from \rho t at N different time instances \{ t1, t2, . . . , tN\} 
along the solution of (1.1), we can acquire N sets of parameters \theta t1 , . . . , \theta tN from
the solution of (1.2), which provide N pushforward maps T\theta t1 , . . . , T\theta tN . Thus the
desired samples at time tk are \{ T\theta tk (\bfitZ 1), . . . , T\theta tk (\bfitZ M )\} , in which \{ \bfitZ 1, . . . ,\bfitZ M\} are
samples drawn from the reference distribution p. If needed, the pushforward maps
can be conveniently reused to generate more samples with negligible additional cost.

1.2. Computational method. For the computation of (1.2), we want to point
out that metric tensor G(\theta ) doesn't have an explicit form, and thus the direct com-
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NEURAL PARAMETRIC FOKKER--PLANCK EQUATION 1387

putation of G(\theta ) - 1\nabla \theta H(\theta ) is not tractable. To deal with this issue, we design a
numerical algorithm based on the semi-implicit Euler scheme of (1.2) with time step
size h. To be more precise, at each time step, the algorithm seeks to solve the following
double-minimization problem:

min
\theta 

\biggl\{ \biggl( \int \bigl( 
2 \nabla \phi (x) \cdot ((T\theta  - T\theta k) \circ T - 1

\theta k
(x)) - | \nabla \phi (x)| 2

\bigr) 
\rho \theta k(x) dx

\biggr) 
+ 2hH(\theta )

\biggr\} 
,

with the constraint: \phi solves min
\phi 

\biggl\{ \int 
| \nabla \phi (x) - ((T\theta  - T\theta k) \circ T - 1

\theta k
(x))| 2\rho \theta k(x) dx

\biggr\} 
.

(1.3)

Here \rho \theta k is the density of the pushed forward distribution T\theta k\sharp p (cf. Definition 3.2),
and \phi : \BbbR d \rightarrow \BbbR is the Kantorovich dual potential variable for constrained probability
models in optimal transport theory. Hence (1.3) is derived following the semi-implicit
Euler scheme in the dual variable. The advantage of using this formulation is that it
allows us to design an efficient implementation, purely based on sampling techniques
which are computationally friendly in high-dimensional problems, to compute the
solution of the parametric Fokker--Planck equation (1.2). In our implementation, we
endow the pushforward map T\theta with certain kinds of deep neural networks known
as normalizing flows [58], because they are friendly to our scheme evaluations. The
dual variable \phi in the inner maximization is parametrized by the deep rectified linear
unit (ReLU) networks [53]. Once the network structures for T\theta and \phi are chosen, the
optimizations are carried out by stochastic gradient descent method [62], in which all
terms involved can be computed using samples from the reference distribution p. We
stress that this is critical in scaling up the computation in high dimensions. It is worth
mentioning that we use neural network as a computational tool without any actual
data. Such ``data-poor"" computation is in significant contrast to the mainstream of
deep learning research.

1.3. Major innovations of the proposed method. There are two main in-
novative points regarding our proposed method:

\bullet (Dimension reduction.) Reducing the high-dimensional evolution PDE to a
finite-dimensional ODE system on parameter space. Equivalently, we use
the dynamics in a finite dimension to approximate the density evolution of
particles that follow the Vlasov-type SDE

\.\bfitX t =  - \nabla V (\bfitX t) - D\nabla log \rho t(\bfitX t),

\rho t is the density function of distribution of \bfitX t.

Here D is the diffusion coefficient as mentioned in (1.1). The density function
\rho t corresponds to the Fokker--Planck equation (1.1).

\bullet (Sampling-friendly.) We distill the information of \rho t into parameters \{ \theta t\} by
solving the parametric Fokker--Planck equation (1.2). By doing so, we are able
to obtain an efficient sampling technique to generate samples from \rho t for any
time step t. To be more precise, once we have applied our algorithm to solve
(1.2) for the time-dependent parameters \{ \theta t\} , we can then generate samples
from \rho t by pushing forward the samples drawn from a reference distribution
p using the pushforward map T\theta t with very little computational cost. Such
``implementing once for free future uses"" mechanism is one of the significant
advantages of our proposed algorithm. It is worth mentioning that in the view
of both theoretical derivation and numerical implementation, our method is

D
ow

nl
oa

de
d 

01
/1

9/
25

 to
 7

6.
94

.2
09

.2
19

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1388 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

very different from Langevin Monte Carlo (LMC, MALA) methods [19, 60],
which aim at targeting the stationary distribution of the SDE associated
to (1.1), or moment methods [55], which focus on keeping track of certain
statistical information of the density \rho t.

1.4. Sketch of numerical analysis. In addition to the method proposed for
solving (1.1), we also conducted a mathematical analysis on (1.2) and our algorithm.
We established asymptotic convergence and error estimates for the parametric Fokker--
Planck equation (1.2), which are summarized in the following two theorems.

Theorem 5.1 (asymptotic convergence). Consider the Fokker--Planck equation
(1.1) with potential V and diffusion coefficient D. Suppose V can be decomposed as
V = U + \phi with U \in \scrC 2(\BbbR d), \nabla 2U \succeq KI1 with K > 0 and \phi \in L\infty (\BbbR d), and \{ \theta t\} 
solves (1.2). Then the following inequality holds:

\scrD KL(\rho \theta t\| \rho \ast ) \leq 
\delta 0

\~\lambda DD2
(1 - e - D

\~\lambda Dt) +\scrD KL(\rho \theta 0\| \rho \ast )e - D
\~\lambda Dt,

where \rho \ast is the Gibbs distribution, \~\lambda D > 0 is a constant related to the potential
function V and D, and \delta 0 is a constant depending on the approximation power of
pushforward map T\theta .

Theorem 5.11 (approximation error). Consider the Fokker--Planck equation (1.1)
with potential V , diffusion coefficient D, and initial density \rho 0. Assume that \lambda is a
lower bound of Hessian of potential V , i.e., \nabla 2V \succeq \lambda I, \delta 0 is defined in Theorem
5.1, E0 = W2(\rho \theta 0 , \rho 0), and \delta 0, E0 \ll 1; then the following uniform bounds for the
L2-Wasserstein error W2(\rho \theta t , \rho t) hold:

\bullet When \lambda > 0, W2(\rho \theta t , \rho t) \leq max\{ 
\surd 
\delta 0/\lambda ,E0\} \sim O(

\surd 
\delta 0 + E0).

\bullet When \lambda = 0, W2(\rho \theta t , \rho t) \leq 
\surd 
\delta 0
\mu D

log B\surd 
\delta 0+E0

+ E0 \sim O(
\surd 
\delta 0 log

1\surd 
\delta 0+E0

+ E0).

\bullet When \lambda < 0, W2(\rho \theta t , \rho t) \leq A
\surd 
\delta 0 + C

\bigl( 
E0 +

\surd 
\delta 0/| \lambda | 

\bigr) \alpha \sim O((E0 +
\surd 
\delta 0)

\alpha ).
Here \delta 0 is a constant depending on the approximation power of pushforward map T\theta .
\mu D, A,B,C > 0 are constants depending only on V,D, \rho 0, \theta 0. \alpha = \mu D

| \lambda | +\mu D
is a certain

exponent between 0 and 1.

This result reveals that the difference between the solutions of the parametric
Fokker--Planck equation (1.2) and the original equation (1.1), measured by their
Wasserstein distance W2(\rho \theta t , \rho t), has a uniformly small upper bound if both the ini-
tial error E0 and \delta 0 are small enough. Most of the techniques used in our analysis
for establishing such a result rely on the theory of optimal transport and Wasserstein
manifold, which are still not commonly used for numerical analysis in the relevant
literature.

Besides error analysis for the continuous version of (1.2), we are able to provide
the order of W2-error for the numerical scheme when (1.2) is computed at discrete
time by numerical schemes. To be more precise, if we apply the forward Euler scheme
to (1.2) and compute \{ \theta k\} at different time nodes \{ tk\} , we can show that the error
at tk: W2(\rho \theta k , \rho tk) is of order O(

\surd 
\delta 0) + O(Ch) + O(E0) for finite time t. This is

summarized in the following theorem.

Theorem 5.14 (error for discrete scheme). Assume that \{ \rho t\} t\geq 0 is the solution
of (1.1) with potential satisfying \lambda I \preceq \nabla 2V \preceq \Lambda I, and \{ \theta k\} Nk=0 is the numerical
solution of (1.2) at time nodes tk = kh for k = 0, 1, . . . , N computed by the forward

1The matrix \nabla 2U(x) - KId\times d is nonnegative definite for any x \in \BbbR d.
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NEURAL PARAMETRIC FOKKER--PLANCK EQUATION 1389

Euler scheme with time step h. Recalling \delta 0 as mentioned in Theorem 5.1, we denote
E0 =W2(\rho \theta 0 , \rho 0), giving us

W2(\rho \theta k , \rho tk) \leq (
\sqrt{} 
\delta 0h+ Ch2)

(1 - e - \lambda tk)
1 - e - \lambda h

+ e - \lambda tkE0 \sim O(
\sqrt{} 
\delta 0) +O(Ch) +O(E0),

0 \leq k \leq N,

where C is a constant depending on N and h.

This indicates that the W2-error is dominated by three different terms: O(
\surd 
\delta 0)

is the intrinsic error originated from the approximation mechanism of the parametric
Fokker--Planck equation; the O(Ch) term is induced by the time discretization; and
the O(E0) term is the initial error. We further prove that the difference between the
forward Euler scheme and our semi-implicit Euler scheme is of order O(h2), which
implies that the proposed semi-implicit Euler scheme can achieve error bounds similar
to the one presented in Theorem 5.14.

It is worth mentioning that we establish Theorem 5.14 based on totally different
techniques than those used for Theorem 5.11. Since the ODE (1.2) contains the
term G(\theta ) - 1, which is hard to handle using traditional strategies, we interpret it as
a particle system governed by stochastic differential equations (SDEs) of Vlasov type
and obtain the analysis results shown in Theorem 5.14.

1.5. Literature review. Numerous works exist for solving the Fokker--Planck
equations. A finite difference scheme is proposed in [14] that preserves the equilib-
rium of the original equation. A more general class of equations possessing Wasserstein
gradient flow structures is solved in [12] in which the method is based on a space dis-
cretization of a proximal-type scheme (also known as the JKO method [23]). Besides
direct solutions, particle simulation techniques also serve as an efficient way of solving
the equation. The ``blob"" method proposed in [11] solves the equations by evolving
a certain interacting particle system. A related swarming system is also studied in
[32, 13, 27, 21, 10]. In [41], the authors propose another type of interacting system in
order to approximate \nabla log \rho , which plays the role of the diffusion term in the Fokker--
Planck equation, with higher accuracy and less fluctuation. In [50, 57], the authors
mainly focus on exploiting the gradient flow structure, i.e., a particle discretization
of the Fokker--Planck equation, to deal with Bayesian inference problems.

In addition to the literature focusing on solving the Fokker--Planck equations,
there are existing works on applying neural networks to solve PDEs of various types
in high-dimensional spaces [70, 56, 24, 25, 73, 45]. Among the listed works, algorithms
for general types of high-dimensional PDEs are provided in [56, 24]; a sampling-
friendly method is proposed in [45] to deal with the general optimal control problem
of diffusion processes. This is equivalent to solving an associated Hamilton--Jacobi--
Bellman equation, and such technique can also be applied to importance sampling and
rare event simulation. Moreover, numerical methods for high-dimensional parabolic
PDEs, to which the Fokker--Planck equation belongs, are studied in [70] and [25]. Our
approach differs from these existing works in many aspects, including motivations,
strategies, and the associated numerical analysis.

For example, in [70], the authors propose to use the nonlinear Feynman--Kac
formula to rewrite certain parabolic PDEs such as the backward stochastic differential
equation (BSDE), which is then reformulated as a stochastic control problem (also
known as reinforcement learning in the machine learning community). By applying a
deep neural network as the control function and optimizing over network parameters,
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the solution at any given space-time location can be evaluated. Another example is
[25], which mainly focuses on computing the committor function that solves a steady-
state (time-independent) Fokker--Planck equation with specific boundary conditions.
This committor function can be treated as the solution to a variational problem
associated with an energy functional. A neural network is used to replace the solution
in the variational problem. When optimizing over network parameters, the neural
network can be used to approximate the committor function.

In this paper, we focus on designing a sampling-friendly method for the time-
dependent Fokker--Planck equation. There are two main reasons that motivate us for
this investigation. One, as mentioned before, is to design a sample-based algorithm
to solve PDEs in high dimensions. The other is to provide an alternative sampling
strategy that can be potentially faster than Langevin Monte Carlo. Our approaches
are different in terms of how deep networks are leveraged to approximate the solution
of the PDE. We use pushforward of a given reference measure by neural networks to
create a generative model. This is to approximate the stream of probability distribu-
tions, which can be used to generate samples not only at the terminal time, but also
any time in between. More importantly, we prove results, obtained by using newly
developed techniques based on a Wasserstein metric on probability manifold, on the
asymptotic convergence and error control of our numerical schemes. To the best of
our knowledge, similar results are still lacking in existing studies.

1.6. Organization of this paper. We organize the paper as follows. In sec-
tion 2, we briefly introduce some background knowledge of the Fokker--Planck equa-
tion, including its relation with SDEs and its Wasserstein gradient flow structure.
In section 3, we introduce the Wasserstein statistical manifold (\Theta , G) and derive our
parametric Fokker--Planck equation as the manifold gradient flow of relative entropy
on \Theta . We study the geometric property of this equation, including an insightful
particle motion--based interpretation of the parametric Fokker--Planck equation. In
section 4, we design a numerical scheme that is tractable for computing our paramet-
ric Fokker--Planck equation using a deep learning framework. Some important details
of implementation will be discussed. We present asymptotic convergence and error
estimates for the parametric Fokker--Planck equation in section 5 and provide some
numerical examples in section 6.

2. Background on the Fokker--Planck equation. In this section, we present
two different perspectives regarding the Fokker--Planck equations. More discussion
can be found in [35].

2.1. As the density evolution of stochastic differential equations. The
general form of the Fokker--Planck equation is [51, 31]

\partial \rho (x, t)

\partial t
=  - \nabla \cdot (\rho (x, t)\bfitmu (x, t)) + 1

2
\nabla 2 : (\bfitD (x, t)\rho (x, t))

=  - 
d\sum 

i=1

\partial 

\partial xi
(\rho (x, t)\mu i(x, t))+

1

2

d\sum 

i,j=1

\partial 2

\partial xi\partial xj
(Dij(x, t)\rho (x, t)), \rho (x, 0) = \rho 0(x).

Here \bfitmu = (\mu 1, . . . , \mu d)
T is the drift function and\bfitD = \{ Dij\} is the d\times d diffusion tensor.

Furthermore, \bfitD can be written as \bfitD = \bfitsigma \bfitsigma T, where \bfitsigma (x, t) is a d \times \~d matrix. One
derivation of the Fokker--Planck equation originates from the following SDE [51, 31]:

d\bfitX t = \bfitmu (\bfitX t, t) dt+ \bfitsigma (\bfitX t, t) d\bfitB t, \bfitX 0 \sim \rho 0,
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NEURAL PARAMETRIC FOKKER--PLANCK EQUATION 1391

where \{ \bfitB t\} t\geq 0 is the standard Brownian motion in \BbbR \~d, and \rho 0 is the distribution
of the initial state. It is well known that the evolution of the density \rho (x, t) of the
stochastic process \{ \bfitX t\} t\geq 0 is described by the above Fokker--Planck equation.

In this paper, we consider a more specific type of (2.1) by setting \bfitmu (x, t) =
 - \nabla V (x), \bfitsigma (x, t) =

\surd 
2D Id\times d (D > 0), where Id\times d is the d\times d identity matrix, and

so \bfitD = 2D Id\times d. Then (2.1) is

(2.1) d\bfitX t =  - \nabla V (\bfitX t) dt+
\surd 
2D d\bfitB t, \bfitX 0 \sim \rho 0.

This equation is also called overdamped Langevin dynamics, which has broad ap-
plications in computational physics, computational biology, and Bayesian statistics
[19, 63, 71]. The corresponding Fokker--Planck equation is simplified to

(2.2)
\partial \rho (x, t)

\partial t
= \nabla \cdot (\rho (x, t)\nabla V (x)) +D\Delta \rho (x, t), \rho (x, 0) = \rho 0(x).

In addition, we would like to mention that there is a Vlasov-type SDE corresponding
to the Fokker--Planck equation (2.2):

(2.3)
d\bfitX t

dt
=  - \nabla V (\bfitX t) - D \nabla log \rho (\bfitX t, t), \bfitX 0 \sim \rho 0,

in which \rho (\cdot , t) is the density of \bfitX t. This Vlasov-type SDE (2.3) will be very useful
in our proofs for the error estimates of our proposed numerical algorithms.

2.2. As the Wasserstein gradient flow of relative entropy. Another useful
viewpoint states that (2.2) is the Wasserstein gradient flow of relative entropy. We
briefly present some of the notation and basic results in this regard. We only provide
in sections 2.2.1 and 2.2.2 an informal discussion on the Wasserstein manifold and
Wasserstein gradient flow. More rigorous treatments on the topics can be found
in [4].

2.2.1. Wasserstein manifold. Denote the probability space supported on \BbbR d
with densities having finite second order moments as

\scrP =

\biggl\{ 
\rho :

\int 
\rho (x)dx = 1, \rho (x) \geq 0,

\int 
| x| 2\rho (x) dx <\infty 

\biggr\} 
.

Here the integral is computed over the sample space \BbbR d. In the following discussion,
if not specified, we always write

\int 
\BbbR d as

\int 
for simplicity.

The so-called Wasserstein distance (also known as L2-Wasserstein distance) on \scrP 
is defined as [68]

(2.4) W2(\rho 1, \rho 2) =

\biggl( 
inf

\pi \in \Pi (\rho 1,\rho 2)

\int \int 
| x - y| 2 d\pi (x, y)

\biggr) 1/2

,

where \Pi (\rho 1, \rho 2) is the set of joint distributions defined on \BbbR d \times \BbbR d with fixed mar-
ginal distributions whose densities are \rho 1, \rho 2. If we treat \scrP as an infinite-dimensional
manifold, the Wasserstein distance W2 can induce a metric gW on the tangent bundle
\scrT \scrP , with which \scrP becomes a Riemannian manifold. For simplicity, here we directly
give the definition of gW . One can identify the tangent space at \rho as

\scrT \rho \scrP =

\biggl\{ 
f :

\int 
f(x)dx = 0

\biggr\} 
.
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1392 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

For a specific \rho \in \scrP and fi \in \scrT \rho \scrP , i = 1, 2, we define the Wasserstein metric tensor
gW as [30, 46]

(2.5) gW (\rho )(f1, f2) =

\int 
\nabla \psi 1(x) \cdot \nabla \psi 2(x)\rho (x) dx,

where \psi 1, \psi 2 satisfy

(2.6) fi =  - \nabla \cdot (\rho \nabla \psi i), i = 1, 2,

with boundary conditions

lim
x\rightarrow \infty 

\rho (x)\nabla \psi i(x) = 0, i = 1, 2.

Using the above definition, we can also write

gW (\rho )(f1, f2) =

\int 
\psi 1( - \nabla \cdot (\rho \nabla \psi 2)) dx =

\int 
( - \nabla \cdot (\rho \nabla )) - 1(f1) \cdot f2 dx.

Thus, we can identify gW (\rho ) as ( - \nabla \cdot (\rho \nabla )) - 1. When supp(\rho ) = \BbbR d, gW (\rho ) is a
positive definite bilinear form defined on tangent bundle \scrT \scrP = \{ (\rho , f) : \rho \in \scrP , f \in 
\scrT \rho \scrP \} . Hence we can treat \scrP as a Riemannian manifold, which we call Wasserstein
manifold, denoted by (\scrP , gW ) [46]. In order to keep our notation concise, in what
follows, we denote gW (\rho ) as gW if no confusion is caused.

2.2.2. Wasserstein gradient. We denote the Wasserstein gradient gradW as
the manifold gradient on (\scrP , gW ). In Riemannian geometry, the manifold gradient
must be compatible with the metric, implying that for any smooth functional \scrF 
defined on \scrP and any \rho \in \scrP , considering an arbitrary differentiable curve \{ \rho t\} t\in ( - \delta ,\delta )
with \rho 0 = \rho , we have

d

dt
\scrF (\rho t)

\bigm| \bigm| \bigm| 
t=0

= gW (\rho )(gradW\scrF (\rho ), \.\rho 0).

Since we can write

d

dt
\scrF (\rho t)

\bigm| \bigm| \bigm| 
t=0

=

\int 
\delta \scrF (\rho )

\delta \rho (x)
(x) \cdot \.\rho 0(x) dx =

\biggl\langle 
\delta \scrF (\rho )

\delta \rho 
, \.\rho 0

\biggr\rangle 

L2

,

where \delta \scrF (\rho )
\delta \rho (x) (x) is the L

2 variation of \scrF at point x \in \BbbR d, we then have

\biggl\langle 
\delta \scrF (\rho )

\delta \rho 
, \.\rho 0

\biggr\rangle 

L2

= gW (\rho )(gradW\scrF (\rho ), \.\rho 0) \forall \.\rho 0 \in \scrT \rho \scrP .

This leads to the following useful formula for computing the Wasserstein gradient of
functional \scrF :

gradW\scrF (\rho ) = gW (\rho )
 - 1
\biggl( 
\delta \scrF 
\delta \rho 

\biggr) 
(x) =  - \nabla \cdot 

\biggl( 
\rho (x)\nabla \delta \scrF (\rho )

\delta \rho (x)
(x)

\biggr) 
.(2.7)

In particular, if \scrF is taken as the relative entropy functional given by

(2.8) \scrH (\rho ) = D \scrD KL

\Bigl( 
\rho 
\bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \rho \ast 

\Bigr) 
=

\biggl( \int 
V (x)\rho (x) +D\rho (x) log \rho (x) dx

\biggr) 
+D logZD,
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NEURAL PARAMETRIC FOKKER--PLANCK EQUATION 1393

we have \nabla \delta \scrH (\rho )
\delta \rho = \nabla V + D\nabla log \rho . Using (2.7), and noticing \nabla log \rho = \nabla \rho 

\rho , then

\nabla \cdot (\rho \nabla log \rho ) = \nabla \cdot (\nabla \rho ) = \Delta \rho , and the Wasserstein gradient flow of \scrH can be written
as

\partial \rho 

\partial t
=  - gradW\scrH (\rho ) = \nabla \cdot (\rho \nabla V ) +D\nabla \cdot (\rho \nabla log \rho ),

which is exactly the Fokker--Planck equation (2.2).

3. Parametric Fokker--Planck equation. In this section, we provide a de-
tailed derivation for our parametric Fokker--Planck equation.

3.1. Wasserstein statistical manifold. Consider a parameter space \Theta as an
open, convex set in \BbbR m, and assume the sample space is \BbbR d. Let T\theta be a map from \BbbR d
to \BbbR d parametrized by \theta . In our discussion, we always assume the invertibility of T\theta (x),
and it is second order differentiable with respect to x and \theta , i.e., T\theta (x) \in C2(\Theta \times \BbbR d).

Remark 3.1. There are many different choices for T\theta :
\bullet We can set T\theta (x) = Ux + b, with \theta = (U, b), where U is a d \times d invertible
matrix and b \in \BbbR d.

\bullet We may also choose T\theta as the linear combination of basis functions T\theta (x) =\sum m
k=1 \theta k

\vec{}\Phi k(x), where \{ \vec{}\Phi k\} mk=1 are the basis functions and the parameter \theta 
will be the coefficients \theta = (\theta 1, . . . , \theta m).

\bullet We can also treat T\theta as a neural network. Its general structure can be written
as the composition of l affine and nonlinear activation functions: T\theta (x) =
\sigma l(Wl(\sigma l - 1(. . . \sigma 1(W1x + b1) . . .)) + bl). In this case, the parameter \theta will
be the weight matrices and bias vectors of the neural network, i.e., \theta =
(W1, b1, . . . ,Wl, bl).

Definition 3.2. Suppose X,Y are two measurable spaces, and \lambda is a probability
measure defined on X; let f : X \rightarrow Y be a measurable map. We define f\sharp \lambda as
f\sharp \lambda (E) = \lambda (f - 1(E)) for all measurable E \subset Y . We call f\sharp \lambda the pushforward of
measure \lambda by map f .

Let p \in \scrP be a reference probability measure with positive density defined on
\BbbR d, such as the standard Gaussian. We denote by \rho \theta the density of T\theta \sharp p. Such
a mechanism of producing parametric probability distributions is also known as a
generative model, which has broad applications in deep learning research [18, 5, 8].
We further assume our T\theta satisfy the following two conditions:

(3.1) Condition 1:

\int 
| z| 2\rho \theta (z) dz =

\int 
| T\theta (x)| 2 dp(x) <\infty \forall \theta \in \Theta .

This ensures that \rho \theta \in \scrP for each \theta \in \Theta . In order to introduce Wasserstein metric
to the parameter space \Theta , we also assume that the Frobenius norm of the operator
\partial \theta T\theta (x) : \BbbR d \rightarrow \BbbR d\times m is locally bounded in the following sense: for any fixed \theta \ast \in \Theta ,
there exist r(\theta \ast ) > 0 and two functions L1(\cdot | \theta \ast ), L2(\cdot | \theta \ast ) satisfying the following
condition:

Condition 2: \| \partial \theta T\theta (x)\| F \leq L1(x| \theta \ast ), \| \partial \theta T\theta (x)\| 2F \leq L2(x| \theta \ast ),
\forall \theta , | \theta  - \theta \ast | < r(\theta \ast ) and x \in \BbbR d, and\int 

L1(x| \theta \ast ) dx <\infty ,

\int 
L2(x| \theta \ast ) dx <\infty .

(3.2)
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1394 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

We define the parametric submanifold \scrP \Theta \subset \scrP as

\scrP \Theta = \{ \rho \theta is density function of T\theta \sharp p | \theta \in \Theta \} .

Clearly, the connection between \scrP and \Theta is through the pushforward operation
T\theta \sharp : \Theta \rightarrow \scrP \Theta , \theta \mapsto \rightarrow \rho \theta . Hence it is natural to define the Wasserstein metric G(\theta ) on
parameter space \Theta as the pullback of gW by T\theta \sharp . To be specific, we define G(\theta ) =
(T\theta \sharp )

\ast gW . Using this definition, T\theta \sharp becomes an isometric immersion from \Theta to \scrP .
For each \theta , G(\theta ) is a bilinear form defined on \scrT \theta \Theta \simeq \BbbR m, which can be identified as
an m\times m matrix.

Before computing G(\theta ), we introduce a lemma which can help us to better un-
derstand G(\theta ).

Lemma 3.3. Suppose \vec{}u,\vec{}v are two vector fields defined on \BbbR d, and suppose \varphi ,\psi 
solves  - \nabla \cdot (\rho \nabla \varphi ) =  - \nabla \cdot (\rho \vec{}u) and  - \nabla \cdot (\rho \nabla \psi ) =  - \nabla \cdot (\rho \vec{}v), or equivalently Proj\rho [\vec{}u] =
\nabla \varphi and Proj\rho [\vec{}v] = \nabla \psi (cf. Definition 4.2). Then

\int 
\vec{}u(x) \cdot \nabla \psi (x)\rho (x) dx =

\int 
\nabla \varphi (x) \cdot \nabla \psi (x)\rho (x) dx,(3.3)

\int 
| \nabla \psi (x)| 2\rho (x) dx \leq 

\int 
| \vec{}v(x)| 2\rho (x) dx.(3.4)

We prove Lemma 3.3 in Appendix A. The metric tensor G(\theta ) is computed in the
following theorem.

Theorem 3.4. Assume \Theta satisfies (3.1), (3.2). T\theta is invertible and T\theta (x) \in 
C2(\Theta \times \BbbR d). Then \Theta can be equipped with the metric tensor G = (T\theta \sharp )

\ast gW , which is
an m\times m nonnegative definite symmetric matrix of the form

(3.5) G(\theta ) =

\int 
\nabla \Psi (T\theta (x))\nabla \Psi (T\theta (x))

T dp(x)

at every \theta \in \Theta . More precisely, in entrywise form,

Gij(\theta ) =

\int 
\nabla \psi i(T\theta (x)) \cdot \nabla \psi j(T\theta (x)) dp(x), 1 \leq i, j \leq m,

in which \Psi = (\psi 1, . . . , \psi m)T and \nabla \Psi is an m \times d Jacobian matrix of \Psi . For each
j = 1, 2, . . . ,m, \psi j solves the equation

(3.6) \nabla \cdot (\rho \theta \nabla \psi j(x)) = \nabla \cdot 
\biggl( 
\rho \theta 

\partial T\theta 
\partial \theta j

(T - 1
\theta (x))

\biggr) 
,

with boundary conditions

lim
x\rightarrow \infty 

\rho \theta (x)\nabla \psi j(x) = 0.

Proof. Supposing \xi \in \scrT \Theta is a vector field on \Theta , for a fixed \theta \in \Theta , we first compute
the pushforward (T\theta \sharp )\ast \xi (\theta ) of \xi at point \theta . We choose any smooth curve \{ \theta t\} t\geq 0 on

\Theta with \theta 0 = \theta and \.\theta 0 = \xi (\theta ). If we denote \rho \theta t = T\theta t \sharp p, we have (T\theta \sharp )\ast \xi (\theta ) =
\partial \rho \theta t
\partial t

\bigm| \bigm| 
t=0

.

To compute
\partial \rho \theta t
\partial t

\bigm| \bigm| 
t=0

, we consider an arbitrary \phi \in C\infty 
0 (M).

On the one hand,
\rho \theta \Delta t

(y) - \rho \theta 0 (y)
\Delta t = \partial 

\partial t\rho (\theta \~t1 , y), where
\~t1 is some point between

0,\Delta t; since \phi \in C\infty 
0 and \rho (\theta t, x) is at least C

1 with respect to t, y, we can show that
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the function \varphi (x) = sups\in [0,\Delta t] | \phi (x) \partial \partial t\rho (\theta s, y)| is continuous on a compact set and

thus integrable on \BbbR d. Using the dominated convergence theorem, we obtain

(3.7)
\partial 

\partial t

\biggl( \int 
\phi (y)\rho \theta t(y) dy

\biggr) \bigm| \bigm| \bigm| 
t=0

=

\int 
\phi (y)

\partial \rho \theta t(y)

\partial t

\bigm| \bigm| \bigm| 
t=0

dy.

On the other hand, we have

(3.8)
\phi (T\theta \Delta t

(y)) - \phi (T\theta 0(y))

\Delta t
= \.\theta T\~t2 \partial \theta T\theta \~t2 (x)

T \nabla \phi (T\theta \~t2 (y)),

in which \~t2 is also between 0,\Delta t. For any \Delta t small enough and \~t \in [0,\Delta t], we can
easily find upper bounds for \| \.\theta \~t\| \leq A and \| \nabla \phi (\cdot )\| \infty \leq B. Recall the condition (3.2);
when \Delta t is small enough, we have | \theta \Delta t - \theta 0| < r(\theta 0), and thus we obtain the following
upper bound for (3.8):

| \.\theta T\~t \partial \theta T\theta \~t(x)
T \nabla \phi (T\theta \~t(y))| \leq AB\| \partial \theta T\theta \~t(x)\| F \leq ABL1(x| \theta 0).

By (3.2), we know L1(\cdot | \theta 0) \in L1(p), and we can apply the dominated convergence
theorem to obtain

(3.9)
\partial 

\partial t

\biggl( \int 
\phi (T\theta t(x))dp

\biggr) \bigm| \bigm| \bigm| 
t=0

=

\int 
\.\theta t
T
\partial \theta T\theta t(x)

T\nabla \phi (T\theta t(x))| t=0dp.

Since \partial 
\partial t

\int 
\phi (y)\rho \theta t(y) dy = \partial 

\partial t

\int 
\phi (T\theta t(x)) dp(x), we use (3.7) and (3.9) to get

\int 
\phi (y)

\partial \rho \theta t
\partial t

(y)
\bigm| \bigm| \bigm| 
t=0

dy =

\int 
\.\theta t
T
\partial \theta T\theta t(x)

T\nabla \phi (T\theta t(x))| t=0 dp(x)

=

\int 
\.\theta Tt

\biggl( 
\partial T\theta t
\partial \theta 

(T - 1
\theta t

(x))

\biggr) T

\nabla \phi (x) \rho \theta t(x)| t=0 dx

=

\int 
\phi (x)

\biggl( 
 - \nabla \cdot 

\biggl( 
\rho \theta t(x)

\partial T\theta t
\partial \theta 

(T - 1
\theta t

(x)) \.\theta t

\biggr) \biggr) 
| t=0 dx.

Because \phi (x) is arbitrary, this weak formulation reveals that

(3.10) (T\theta \sharp )\ast \xi (\theta ) =
\partial \rho \theta t
\partial t

\bigm| \bigm| \bigm| 
t=0

=  - \nabla \cdot 
\biggl( 
\rho \theta (x)

\partial T\theta 
\partial \theta 

(T - 1
\theta (x))\xi (\theta )

\biggr) 
.

Now let us compute the metric tensor G. Since T\theta \sharp is an isometric immersion from
\Theta to \scrP , the pullback of gW by T\theta \sharp gives G, i.e., (T\theta \sharp )

\ast gW = G(\theta ). By definition of
pullback map, for any \theta \in \Theta and \xi (\theta ) \in \scrT \theta \Theta , we have

(3.11) G(\theta )(\xi (\theta ), \xi (\theta )) = gW (\rho \theta )((T\theta \sharp )\ast \xi (\theta ), (T\theta \sharp )\ast \xi (\theta )).

To compute the right-hand side of (3.11), recalling (2.5), we need to solve for \varphi from

(3.12)
\partial \rho \theta t
\partial t

\bigm| \bigm| \bigm| 
t=0

=  - \nabla \cdot (\rho \theta (x)\nabla \varphi (x)).

By (3.10), (3.12) is

(3.13) \nabla \cdot (\rho \theta (x)\nabla \varphi (x)) = \nabla \cdot 
\biggl( 
\rho \theta (x)

\partial \theta T\theta 
\partial \theta 

(T - 1
\theta (\cdot ))\xi (\theta )

\biggr) 
.
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We can straightforwardly check that \varphi (x) = \Psi T(x)\xi (\theta ) is the solution of (3.13). Now
by definition of gW as mentioned in subsection 2.2.1, we write the right-hand side of
(3.11) as
(3.14)

gW (\rho \theta )((T\theta \sharp )\ast \xi (\theta ), (T\theta \sharp )\ast \xi (\theta )) =
\int 

| \nabla \varphi (y)| 2\rho \theta (y) dy

= \xi (\theta )T
\biggl( \int 

\nabla \Psi (y)\nabla \Psi (y)T\rho \theta (y) dy

\biggr) 
\xi (\theta )

=

m\sum 

i,j=1

\biggl( \int 
\nabla \psi i(y) \cdot \nabla \psi j(y)\rho \theta (y) dy

\biggr) 
\xi i(\theta )\xi j(\theta ).

Here we assume components of \xi (\theta ) as (\xi 1(\theta ), . . . , \xi m(\theta ))T. Before we compute G(\theta ),
we first verify that the inner product in (3.14) is finite for any \xi \in \scrT \Theta . To show this,
by the Cauchy--Schwarz inequality we obtain

\int 
\nabla \psi i(y) \cdot \nabla \psi j(y)\rho \theta (y) dy \leq 

\biggl( \int 
| \nabla \psi i(y)| 2\rho \theta (y) dy

\biggr) 1
2
\biggl( \int 

| \nabla \psi j(y)| 2\rho \theta (y) dy
\biggr) 1

2

.

Recall \psi j as defined in (3.6); then applying (3.4) of Lemma 3.3 yields

\int 
| \nabla \psi j(y)| 2\rho \theta (y) dy \leq 

\int \bigm| \bigm| \bigm| \bigm| 
\partial T\theta 
\partial \theta j

(T - 1
\theta (y))

\bigm| \bigm| \bigm| \bigm| 
2

\rho \theta (y) dy

=

\int \bigm| \bigm| \bigm| \bigm| 
\partial T\theta 
\partial \theta j

(x)

\bigm| \bigm| \bigm| \bigm| 
2

dp(x) \leq 
\int 
L2(y| \theta )p(y) dy <\infty .

The last two inequalities are due to condition (3.2). As a result, we proved the
finiteness of (3.14).

Finally, let us compute

G(\theta )(\xi (\theta ), \xi (\theta )) = gW (\rho \theta )((T\theta \sharp )\ast \xi (\theta ), (T\theta \sharp )\ast \xi (\theta ))

= \xi (\theta )T
\biggl( \int 

\nabla \Psi (T\theta (x))\nabla \Psi (T\theta (x))
Tdp(x)

\biggr) 
\xi (\theta ).

Thus we can verify that

G(\theta ) =

\int 
\nabla \Psi (T\theta (x))\nabla \Psi (T\theta (x))

T dp(x),

which completes the proof.

Generally speaking, the metric tensor G does not have an explicit form when
d \geq 2. It is worth mentioning that G has an explicit form and can be computed
directly when d = 1 [35].

Remark 3.5 (well-posedness of (3.6)). It is worth commenting on the existence
and the regularity question of equations like (3.6). Determining what properties or
conditions that T\theta should have to guarantee the well-posedness of (3.6) is an interest-
ing and important problem on its own. In references such as [48] and [69], there are
sufficient conditions that guarantee the well-posedness of elliptic PDEs defined on \BbbR d.
Most of the existing results require a uniform lower bound on \rho \theta , i.e., \rho \theta (x) > \epsilon > 0 for
all x \in \BbbR d. Such a coercive condition is not applicable in our case since

\int 
\rho \theta (x)dx = 1

is finite.
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NEURAL PARAMETRIC FOKKER--PLANCK EQUATION 1397

It is worth pointing out that under certain situations discussed in section 3.4, (3.6)
does have classical solutions. For example, if we select T\theta as an affine transform and
consider the Fokker--Planck equation (2.2) with quadratic potential V and Gaussian
initial \rho 0, we can prove that (3.6) is well-posed along the trajectory of the ODE (3.18),
i.e., the elliptic equation

 - \nabla \cdot (\rho \theta t\nabla \psi ) =  - \nabla \cdot 
\biggl( 
\rho \theta t

\partial \theta T\theta t
\partial \theta 

(T - 1
\theta t

(x)) \.\theta t

\biggr) 
, where \{ \theta t\} solves (3.18),

always admits a classical solution \psi (x) = V (x) +D log \rho \theta (x) + Const.
In general, the conditions imposed on T\theta to guarantee well-posedness of (3.6)

are a fundamental and interesting subject for further investigation. A good reference
related to the topic can be found in [4].

The following theorem provides several criteria for examining whether G is a
Riemannian metric, i.e., whether G(\theta ) is positive definite.

Theorem 3.6. For \theta \in \Theta , \{ \psi k\} mk=1 satisfies (3.6), and the following four state-
ments are equivalent:

1. G(\theta ) is positive definite.
2. For any \xi \in \scrT \theta \Theta (\xi \not = 0), there exists z \in M such that \nabla \cdot (\rho \theta (z)\partial T\theta 

\partial \theta (T - 1
\theta (z))\xi )

\not = 0.
3. \{ \nabla \psi k\} mk=1, as m functions in the space L2(\BbbR d;\BbbR d, \rho \theta k), are linearly indepen-

dent.
4. d

dt (T\theta +t\xi \sharp p)| t=0 \not = 0 for any \xi \in \BbbR m.

Proof. We first verify that 1 and 2 are equivalent. We need the following identity,
used in Theorem 3.4: For any \theta , \xi , x, we have

(3.15) \nabla \cdot (\rho \theta (x)\nabla (\xi T\Psi (x))) = \nabla \cdot 
\biggl( 
\rho \theta (x)

\partial T\theta 
\partial \theta 

(T - 1
\theta (x))\xi 

\biggr) 
.

(\Leftarrow ): Suppose for any \theta \in \Theta and \xi \in \scrT \theta \Theta , at certain z \in \BbbR d, that
\nabla \cdot (\rho \theta (z)\partial T\theta 

\partial \theta (T - 1
\theta (z)\xi ) \not = 0; then\nabla \cdot (\rho \theta (z)\nabla (\xi T\Psi (z))) \not = 0, and thus \rho \theta \nabla (\xi T\Psi ) is not

identically 0. Using continuity of \rho \theta \nabla (\xi T\Psi ), we know that | \nabla (\xi T\Psi (x))| 2\rho \theta (x) > 0
in some small neighborhood of z. Thus we have that

(3.16) \xi TG(\theta )\xi =

\int 
| \nabla \Psi (x)T\xi | 2\rho \theta (x) dx > 0

holds for any \theta and \xi , which leads to the positive definiteness of G.
(\Rightarrow ): Now suppose (3.16) holds for all \theta , \xi ; then we have

\int 
 - \nabla \cdot (\rho \theta (x)\nabla (\xi T\Psi (x))) \cdot \xi T\Psi (x) dx > 0.

This leads to the existence of a z \in \BbbR d such that  - \nabla \cdot (\rho \theta (z)\nabla (\xi T\Psi (z))) \not = 0. Com-
bining (3.15), we have verified the equivalence between 1 and 2.

Recalling (3.10), we then have d
dt (T\theta +t\xi \sharp p)| t=0=(T\theta \sharp )\ast \xi = - \nabla \cdot (\rho \theta (x)\partial T\theta 

\partial \theta (T - 1
\theta (x))\xi ),

which verifies the equivalence between 2 and 3.
Finally, as stated before, we can verify \xi TG(\theta )\xi = \| \sum k=1 \xi k\nabla \psi k\| 2L2(\rho \theta )

; this
formula will directly lead to the equivalence between 1 and 4, and we have proved the
equivalence among statements 1, 2, 3, and 4.

To keep our discussion concise in the following sections, we will always assume
G(\theta ) is positive definite for every \theta \in \Theta .

D
ow

nl
oa

de
d 

01
/1

9/
25

 to
 7

6.
94

.2
09

.2
19

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1398 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

3.2. Parametric Fokker--Planck equation. We consider the pushforward T(\cdot )\sharp 
induced relative entropy functional H = \scrH \circ T(\cdot )\sharp : \Theta \rightarrow \BbbR :

H(\theta ) = \scrH (\rho \theta ) =

\biggl( \int 
V (x)\rho \theta (x) +D\rho \theta (x) log \rho \theta (x) dx

\biggr) 
+D logZD

=

\biggl( \int 
V (T\theta (x)) +D log \rho \theta (T\theta (x)) dp(x)

\biggr) 
+D logZD.(3.17)

Following the theory in [2], the gradient flow of H on the Wasserstein parameter
manifold (\Theta , G) satisfies

(3.18) \.\theta =  - G(\theta ) - 1\nabla \theta H(\theta ).

We call (3.18) the parametric Fokker--Planck equation. The ODE (3.18) as the Wasser-
stein gradient flow on parameter space (\Theta , G) is closely related to the Fokker--Planck
equation on probability submanifold \scrP \Theta . We have the following theorem, which is a
natural result derived from submanifold geometry.

Theorem 3.7. Suppose \{ \theta t\} t\geq 0 solves (3.18). Then \{ \rho \theta t\} is the gradient flow of
\scrH on probability submanifold \scrP \Theta . Furthermore, at any time t, \.\rho \theta t =

d
dt\rho \theta t \in \scrT \rho \theta t\scrP \Theta 

is the orthogonal projection of  - gradW\scrH (\rho \theta t) \in \scrT \rho \theta t\scrP onto the subspace \scrT \rho \theta t\scrP \Theta with

respect to the Wasserstein metric gW .

We prove this theorem in Appendix B.
The following theorem is an important new statement closely related to Theorem

3.7.

Theorem 3.8 (Wasserstein gradient as solution to a least squares problem). For
a fixed \theta \in \Theta , \Psi \subset \BbbR m as defined in Theorem 3.4,
(3.19)

G(\theta ) - 1\nabla \theta H(\theta ) = argmin
\eta \in \scrT \theta \Theta \sim =\BbbR m

\biggl\{ \int 
| (\nabla \Psi (T\theta (x)))

T\eta  - \nabla (V +D log \rho \theta ) \circ T\theta (x)| 2dp(x)
\biggr\} 
.

Proof. Direct computation shows that minimizing the function in (3.19) is equiv-
alent to minimizing

\eta T
\biggl( \int 

\nabla \Psi (T\theta (x))\nabla \Psi (T\theta (x))
T dp(x)

\biggr) 
\eta 

 - 2 \eta T
\biggl( \int 

\nabla \Psi (y)\nabla (V (y) +D log \rho \theta (y))\rho \theta (y) dy

\biggr) 
.

For each entry in the second term, we have
\int 

\nabla \psi k(y) \cdot \nabla (V (y) +D log \rho \theta (y))\rho \theta (y) dy

=

\int 
 - \nabla \cdot (\rho \theta (y)\nabla \psi k(y)) \cdot (V (y) +D log \rho \theta (y)) dy

=

\int 
 - \nabla \cdot (\rho \theta (y)\partial \theta kT\theta (T - 1

\theta (y))) \cdot (V (y) +D log \rho \theta (y)) dy

=

\int 
(\nabla V (T\theta (x)) +D\nabla log \rho \theta (T\theta (x))) \cdot \partial \theta kT\theta (x) dp(x)

=

\int 
\nabla V (T\theta (x)) \cdot \partial \theta kT\theta (x) + \partial \theta k [D log \rho \theta (T\theta (x))] dp(x) - 

\int 
D \partial \theta k log \rho \theta (T\theta (x)) dp(x)

\underbrace{}  \underbrace{}  
=D

\int 
\nabla \theta \rho \theta (y)dy=0

= \partial \theta k

\biggl( \int 
(V (T\theta (x)) +D log \rho \theta (T\theta (x))) dp(x)

\biggr) 
= \partial \theta kH(\theta ).
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Recall the definition (3.5) of G(\theta ); the target function to be minimized is \eta TG(\theta )\eta  - 
2\eta T\nabla \theta H(\theta ), and the minimizer is clearly G(\theta ) - 1\nabla \theta H(\theta ).

In addition to the direct proof, the result in Theorem 3.8 can also be understood
in a different way. Let us denote \xi = G(\theta ) - 1\nabla \theta H(\theta ), where \{ \theta t\} solves (3.18) with
initial value \theta 0 = \theta . By Theorem 3.7, d

dt\rho \theta t
\bigm| \bigm| 
t=0

= (T\theta \sharp )\ast \xi \in \scrT \rho \theta \scrP \Theta is the orthog-

onal projection of gradW\scrH (\rho \theta ) onto \scrT \rho \theta \scrP \Theta with respect to the metric gW . This is
equivalent to saying that \eta solves the following least squares problem:

(3.20) min
\eta 
gW (gradW\scrH (\rho \theta ) - (T\theta \sharp )\ast \eta , gradW\scrH (\rho \theta ) - (T\theta \sharp )\ast \eta ).

Recalling the definition of gW in section 2.2.1, by (2.7) we have gradW\scrH (\rho \theta ) =  - \nabla \cdot 
(\rho \theta \nabla (V +D log \rho \theta )). Because of (3.10), (T\theta \sharp )\ast \eta =  - \nabla \cdot (\rho \theta \partial \theta T\theta (T - 1

\theta (\cdot ))\eta ), and solving
 - \nabla \cdot (\rho \theta \nabla \varphi ) = gradW\scrH (\rho \theta ) - (T\theta \sharp )\ast \eta gives

\varphi = (V +D log \rho \theta ) - \Psi T\eta ,

and thus the least squares problem (3.20) can be written as

min
\eta 

\biggl\{ \int 
| \nabla \Psi (x)T\eta  - \nabla (V (x) +D log \rho \theta (x))| 2\rho \theta (x) dx

\biggr\} 
,

which is exactly (3.19).

3.3. A particle viewpoint of the parametric Fokker--Planck equation.
The motion of parameter \theta t solving (3.18) naturally induces a stochastic dynamics on
\BbbR d whose density evolution is exactly \{ \rho \theta t\} . To see this, notice that \{ \theta t\} directly leads
to a time-dependent map \{ T\theta t\} . Let us denote a random variable \bfitZ \sim p, i.e., \bfitZ is
distributed according to the reference distribution p. We set \bfitY 0 = T\theta 0(\bfitZ ) \sim \rho \theta 0 . At
any time t, the map T\theta t sends \bfitY 0 to \bfitY t = T\theta t(T

 - 1
\theta 0

(\bfitY 0)) \sim \rho \theta t . Thus, we construct a
sequence of random variables \{ \bfitY t\} whose density evolution is exactly \{ \rho \theta t\} . We can
characterize the dynamical system satisfied by \{ \bfitY t\} by taking the time derivative:
\.\bfitY t = \partial \theta T\theta t(\bfitZ ) \.\theta t = \partial \theta T\theta t(T

 - 1
\theta t

(\bfitY t)) \.\theta t. It is actually more insightful to consider the
following dynamic:

(3.21) \.\bfitX t = \nabla \Psi t(\bfitX t)
T \.\theta t, \bfitX 0 = T\theta 0(\bfitZ ) \sim \rho \theta 0 .

Here \Psi t is obtained from (3.6) with parameter \theta t. It is not hard to show that for any
time t, \bfitX t and \bfitY t have the same distribution. Thus \bfitX t \sim \rho \theta t for all t \geq 0. Recalling
\.\theta t =  - G(\theta t) - 1\nabla \theta H(\theta t), we are able to rewrite (3.21) as

(3.22)

\.\bfitX t = \nabla \Psi t(\bfitX t)
T

\biggl( \int 
\nabla \Psi t(x)\nabla \Psi t(x)

T \rho \theta t(x) dx

\biggr) 

\underbrace{}  \underbrace{}  
G(\theta t)

 - 1

\times 
\biggl( \int 

\nabla \Psi t(\eta )( - \nabla V (\eta ) - D\nabla log \rho \theta t(\eta )) \rho \theta t(\eta ) d\eta 

\biggr) 

\underbrace{}  \underbrace{}  
 - \nabla \theta H(\theta t)

.

We define the kernel function K\theta : \BbbR d \times \BbbR d \rightarrow \BbbR d\times d as

K\theta (x, \eta ) = \nabla \Psi T(x)

\biggl( \int 
\nabla \Psi (x)\nabla \Psi (x)T \rho \theta (x) dx

\biggr)  - 1

\nabla \Psi (\eta ).
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This K\theta induces a linear operator \scrK \theta : L2(\BbbR d;\BbbR d, \rho \theta ) \rightarrow L2(\BbbR d;\BbbR d, \rho \theta ) by

\scrK \theta [\vec{}v] = (\scrK \theta \ast \vec{}v)(\cdot ) =
\int 
K\theta (\cdot , \eta ) \vec{}v(\eta ) \rho \theta (\eta ) d\eta .

It can be verified that \scrK \theta is an orthogonal projection defined on the Hilbert space
L2(\BbbR d;\BbbR d, \rho \theta ). The range of such a projection is the subspace span \{ \nabla \psi 1, . . . ,\nabla \psi m\} \subset 
L2(\BbbR d;\BbbR d, \rho \theta ). Here \psi 1, . . . , \psi m are the m components of \Psi solved from (3.6). Using
the linear operator, we can rewrite (3.22) as

\.\bfitX t =  - \scrK \theta t [\nabla V +D\nabla log \rho \theta t ](\bfitX t), where \rho \theta t is the probability density of \bfitX t,

\bfitX 0 \sim \rho \theta 0 .

(3.23)

We can compare (3.23) with the following dynamic without projection:
(3.24)
\.\~\bfitX t =  - (\nabla V +D\nabla log \rho t)( \~\bfitX t), where \rho t is the probability density of \~\bfitX t, \~\bfitX 0 \sim \rho 0.

As discussed in section 2.1, (3.24) is the Vlasov-type SDE that involves the density of a
random particle. If assuming (3.24) admits a regular solution, we have \rho (x, t) = \rho t(x),
which solves the original Fokker--Planck equation (2.2). From an orthogonal projection
viewpoint, the parametric approximation \rho \theta t of \rho t originates from the projection of
the vector field that drives the SDE (3.24).

We would like to mention that the expectation of the \ell 2 discrepancy between
\nabla V +D\nabla log \rho and its \scrK \theta projection is

\BbbE \bfitX \sim \rho \theta | \scrK \theta [\nabla V +D\nabla log \rho \theta ](\bfitX ) - (\nabla V +D\nabla log \rho \theta )(\bfitX )| 2

=

\int 
| \nabla \Psi (x)T\xi  - ( - \nabla V  - D\nabla log \rho \theta )(x)| 2\rho \theta (x) dx,

(3.25)

in which \xi =  - G(\theta ) - 1\nabla \theta H(\theta ). This is an essential term appearing in our error
analysis part.

Remark 3.9. We should mention the relationship between our kernel K\theta t and
the neural tangent kernel (NTK) introduced in [22]. Using our notation, the NTK
can be written as KNTK

\theta = \partial \theta T\theta (x)\partial \theta T\theta (\xi )
T. If we consider the flat gradient flow

\.\theta =  - \nabla \theta H(\theta ) of relative entropy on \Theta , its corresponding particle dynamic is

\.\bfitX t =

\int 
KNTK
\theta t (T - 1

\theta t
(\bfitX t), T

 - 1
\theta t

(\eta ))( - \nabla V (\eta ) - D\nabla log \rho \theta t(\eta ))\rho \theta t(\eta ) d\eta .

Different from ourK\theta , which introduces an orthogonal projection, the NTK introduces
a nonnegative definite transform to the vector field  - \nabla V  - D\nabla log \rho \theta t .

Remark 3.10. Figure 1 illustrates the relation among (2.2), (3.18), (3.24), and
(3.23). It is worth mentioning that the probability manifold point of view discussed
in Theorem 3.7 is useful for our analysis of the continuous dynamics (3.18), while the
particle viewpoint helps us in establishing the numerical analysis for the time discrete
scheme (i.e., forward Euler) of (3.18).

3.4. An example of the parametric Fokker--Planck equation with qua-
dratic potential. The solution of the parametric Fokker--Planck equation (3.18)
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Ẋt = −Kθt
(
∇ δH(ρθt )

δρθt

)
(Xt) on Rd Ẋt = −∇ δH(ρt)

δρt
(Xt) on Rd

θ̇ = −G(θ)−1∇θH(θ) on Θ ∂tρ = −gradWH(ρ) on P(Rd)

Projection of
vector field

How dynamics
on Θ triggers

dynamics on Rd

Density evolution
of Xt solves Fokker

Planck equationProjection from
(P, gW ) onto (Θ, G)

[Particle point of view]

[Probability manifold point of view]

Fig. 1: Illustrative diagram

Remark 3.9. We should mention the relationship between our kernel Kθt and the Neural Tangent Ker-470

nel (NTK) introduced in [22]. Using our notation, Neural Tangent Kernel can be written as KNTK
θ =471

∂θTθ(x)∂θTθ(ξ)
T. If we consider the flat gradient flow θ̇ = −∇θH(θ) of relative entropy on Θ, its corre-472

sponding particle dynamic is473

Ẋt =

∫
KNTK
θt (T−1

θt
(Xt), T

−1
θt

(η))(−∇V (η)−D∇ log ρθt(η))ρθt(η) dη474

Different from our Kθ, which introduces an orthogonal projection, Neural Tangent Kernel introduces an475

non-negative definite transform to the vector field −∇V −D∇ log ρθt .476

Remark 3.10. Figure 1 illustrates the relation between (2.2), (3.18), (3.24) and (3.23). It is worth477

mentioning that the probability manifold point of view discussed in Theorem 3.7 is useful for our analysis of478

the continuous dynamics (3.18), while particle point of view helps us on establishing the numerical analysis479

for the time discrete scheme (i.e. forward-Euler) of (3.18).480

3.4. An example of the parametric Fokker-Planck equation with quadratic potential. The481

solution of the parametric Fokker-Planck equation (3.18) can serve as an approximation to the solution of482

the original equation (2.2). In some special cases, ρθt exactly solves (2.2). In this section, we provide such483

examples.484

Let us consider the Fokker-Planck equations with quadratic potentials whose initial conditions are Gauss-485

ian:486

(3.26) V (x) =
1

2
(x− µ)TΣ−1(x− µ) and ρ0 ∼ N (µ0,Σ0).487

Here N (µ,Σ) denotes Gaussian distribution with mean µ and covariance Σ. We consider parameter space488

Θ = (Γ, b) ⊂ Rm (m = 1
2d(d+ 1) + d), where Γ is a d× d symmetric positive definite matrix and b ∈ Rd. We489

define the parametric map as Tθ(x) = Γx+ b, and choose the reference measure p = N (0, I).490

Lemma 3.11. Let H be the relative entropy defined in (2.8) and H defined in (3.17). For θ ∈ Θ, if491

the vector function ∇
(
δH
δρ

)
◦ Tθ can be written as the linear combination of {∂Tθ∂θ1

, ..., ∂Tθ∂θm
}, i.e. there exists492

ζ ∈ Rm, such that ∇
(
δH
δρ

)
◦ Tθ(x) = ∂θTθ(x)ζ. Then:493

1) ζ = G(θ)−1∇θH(θ), which is the Wasserstein gradient of H at θ.494

2) PΘ as gradWH(ρθ)|PΘ , then gradWH(ρθ)|PΘ = gradWH(ρθ), where gradWH(ρθ)|PΘ is the gradient of H495

on the submanifold PΘ.496

Proof. Suppose that ζ ∈ Rm satisfies ∇
(
δH
δρ

)
◦ Tθ(x) = ∂θTθ(x)ζ, then we have497

∫
|∂θTθ(x)ζ −∇(

δH
δρ

) ◦ Tθ(x)|2 dp(x) = 0.498

This manuscript is for review purposes only.

Fig. 1. Illustrative diagram.

can serve as an approximation to the solution of the original equation (2.2). In some
special cases, \rho \theta t exactly solves (2.2). In this section, we provide such examples.

Let us consider the Fokker--Planck equations with quadratic potentials whose
initial conditions are Gaussian:

(3.26) V (x) =
1

2
(x - \mu )T\Sigma  - 1(x - \mu ) and \rho 0 \sim \scrN (\mu 0,\Sigma 0).

Here \scrN (\mu ,\Sigma ) denotes Gaussian distribution with mean \mu and covariance \Sigma . We
consider parameter space \Theta = (\Gamma , b) \subset \BbbR m (m = 1

2d(d + 1) + d), where \Gamma is a d \times d
symmetric positive definite matrix and b \in \BbbR d. We define the parametric map as
T\theta (x) = \Gamma x+ b, and choose the reference measure p = \scrN (0, I).

Lemma 3.11. Let \scrH be the relative entropy defined in (2.8), and let H be defined
as in (3.17). For \theta \in \Theta , if the vector function \nabla 

\bigl( 
\delta \scrH 
\delta \rho 

\bigr) 
\circ T\theta can be written as the linear

combination of \{ \partial T\theta 

\partial \theta 1
, . . . , \partial T\theta 

\partial \theta m
\} , i.e., there exists \zeta \in \BbbR m, such that \nabla 

\bigl( 
\delta \scrH 
\delta \rho 

\bigr) 
\circ T\theta (x) =

\partial \theta T\theta (x)\zeta , then
(1) \zeta = G(\theta ) - 1\nabla \theta H(\theta ), which is the Wasserstein gradient of H at \theta ;
(2) \scrP \Theta as gradW\scrH (\rho \theta )| \scrP \Theta , and then gradW\scrH (\rho \theta )| \scrP \Theta = gradW\scrH (\rho \theta ), where

gradW\scrH (\rho \theta )| \scrP \Theta is the gradient of \scrH on the submanifold \scrP \Theta .

Proof. Suppose that \zeta \in \BbbR m satisfies \nabla 
\bigl( 
\delta \scrH 
\delta \rho 

\bigr) 
\circ T\theta (x) = \partial \theta T\theta (x)\zeta ; then we have

\int \bigm| \bigm| \bigm| \bigm| \partial \theta T\theta (x)\zeta  - \nabla 
\biggl( 
\delta \scrH 
\delta \rho 

\biggr) 
\circ T\theta (x)

\bigm| \bigm| \bigm| \bigm| 
2

dp(x) = 0.

By definition of \Psi in Theorem 3.4, one can verify

 - \nabla \cdot 
\biggl( 
\rho \theta 

\biggl( 
(\nabla \Psi )T\zeta  - \nabla 

\biggl( 
\delta \scrH 
\delta \rho 

\biggr) \biggr) \biggr) 
=  - \nabla \cdot 

\biggl( 
\rho \theta 

\biggl( 
\partial \theta T\theta \circ T - 1

\theta \zeta  - \nabla 
\biggl( 
\delta \scrH 
\delta \rho 

\biggr) \biggr) \biggr) 
.

Now we apply (3.3) of Lemma 3.3 to obtain

\int \bigm| \bigm| \bigm| \bigm| (\nabla \Psi (T\theta (x)))
T\zeta  - \nabla 

\biggl( 
\delta \scrH 
\delta \rho 

\biggr) 
\circ T\theta (x)

\bigm| \bigm| \bigm| \bigm| 
2

dp(x) \leq 0.
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This implies

inf
\eta 

\int \bigm| \bigm| \bigm| \bigm| (\nabla \Psi (T\theta (x)))
T\eta  - \nabla 

\biggl( 
\delta \scrH 
\delta \rho 

\biggr) 
\circ T\theta (x)

\bigm| \bigm| \bigm| \bigm| 
2

dp(x)

=

\int \bigm| \bigm| \bigm| \bigm| (\nabla \Psi (T\theta (x)))
T\zeta  - \nabla 

\biggl( 
\delta \scrH 
\delta \rho 

\biggr) 
\circ T\theta (x)

\bigm| \bigm| \bigm| \bigm| 
2

dp(x) = 0.

By Theorem 3.8, we get \zeta = G(\theta ) - 1\nabla \theta H(\theta ) and \| (T\theta \sharp )\ast \zeta  - gradW\scrH (\rho \theta )\| gW (\rho \theta ) = 0.
The latter leads to (T\theta \sharp )\ast \zeta = gradW\scrH (\rho \theta ). According to Theorem 3.7, (T\theta \sharp )\ast \zeta =
gradW\scrH (\rho \theta )| \scrP \Theta 

. As a result, we have gradW\scrH (\rho \theta )| \scrP \Theta 
= gradW\scrH (\rho \theta ).

Back to our example with quadratic potential (3.26) and T\theta (x) = \Gamma x+ b, we can
compute

\rho \theta (x) = T\theta \sharp p(x) =
f(T - 1

\theta (x))

| det(\Gamma )| =
f(\Gamma  - 1(x - b))

| det(\Gamma )| , f(x) =
exp( - 1

2 | x| 2)
(2\pi )

d
2

.

Then we have

\nabla 
\biggl( 
\delta \scrH (\rho \theta )

\delta \rho 

\biggr) 
\circ T\theta (x) = \nabla (V +D log \rho \theta ) \circ T\theta (x) = \Sigma  - 1(\Gamma x+ b - \mu ) - D\Gamma  - Tx,

which is affine with respect to x.
Noticing that \partial \Gamma ij

T\theta (x) = (. . . , 0, . . . , xj
ith

, . . . , 0, . . . )T and \partial biT\theta = (. . . , 0, . . . , 1
ith
,

. . . , 0, . . . )T, we can verify that \zeta = (\Sigma  - 1\Gamma  - D\Gamma  - T ,\Sigma  - 1(b  - \mu )) solves \nabla 
\bigl( \delta \scrH (\rho \theta )

\delta \rho 

\bigr) 
\circ 

T\theta (x) = \partial \theta T\theta (x)\zeta . By (1) of Lemma 3.11, \zeta = G(\theta ) - 1\nabla \theta H(\theta ). Thus ODE (3.18) for
our example is

\.\Gamma =  - \Sigma  - 1\Gamma +D\Gamma  - T , \Gamma 0 =
\sqrt{} 

\Sigma 0,(3.27)

\.b = \Sigma  - 1(\mu  - b), b0 = \mu 0.(3.28)

By (2) of Lemma 3.11, we know gradW\scrH (\rho \theta )| \scrP \Theta 
= gradW\scrH (\rho \theta ) for all \theta \in \Theta , which

indicates that there is no error between our parametric Fokker--Planck and the original
equations.

Following (3.27) and (3.28), we have the following corollary,

Corollary 3.12. The solution of the Fokker--Planck equation (2.2) with condi-
tion (3.26) is a Gaussian distribution for all t > 0.

Proof. If we denote \{ \Gamma t, bt\} as the solutions to (3.27), (3.28) and set \theta t = (\Gamma t, bt),
then \rho t = T\theta t \sharp p solves the Fokker--Planck equation (2.2) with conditions (3.26). Since
the pushforward of Gaussian distribution p by an affine transform T\theta is still a Gauss-
ian, we conclude that for any t > 0, the solution \rho t = T\theta t \sharp p is always a Gaussian
distribution.

Remark 3.13. This is already a well-known property for the Ornstein--Uhlenbeck
process [16]. We provide an alternative proof using our framework.

4. Numerical methods. In this section, we introduce our sampling efficient
numerical method to compute the proposed parametric Fokker--Planck equations.

Before we start, we want to mention that, as stated in [35], when dimension
d = 1, G(\theta ) has an explicit solution. Thus the pushforward approximation of the
1D Fokker--Planck equation can be directly computed by solving the ODE system
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NEURAL PARAMETRIC FOKKER--PLANCK EQUATION 1403

(3.18) with numerical methods, such as the forward Euler scheme. In this section,
our focus is on numerical methods for (3.18) with dimension d \geq 2. It turns out to
be very challenging to compute (3.18) by the forward Euler scheme directly. There
are two reasons. One is that there is no known explicit formula for G(\theta ), and direct
computation based on (3.5) can be expensive because it requires solving multiple
differential equations. The other reason is incurred by the high dimensionality, which
is the main goal of this paper. To overcome the challenge of dimensionality, we choose
to use deep neural networks to construct our T (\theta ). However, directly evaluating
G(\theta ) - 1\nabla \theta H(\theta ) is difficult, and alternative strategies must be sought.

There are a few papers investigating numerical methods for gradient flows on
Riemannian manifolds, such as Fisher natural gradient [42] and Wasserstein gradient
[12]. The well-known JKO scheme [23] calculates the time discrete approximation of
the Wasserstein gradient flow using an optimization formulation,

(4.1) \partial t\rho t =  - gradW\scrF (\rho t), \rho k+1 = argmin
\rho \in \scrP 

\biggl\{ 
W 2

2 (\rho , \rho k)

2h
+ \scrF (\rho )

\biggr\} 
,

where h is the time step size, and \scrF could be a suitable functional defined on \scrP .
Along the line of the JKO scheme, there have been further developments in machine
learning recently [34].

In our approach, we design schemes that compute the exact Wasserstein gradi-
ent flow directly with provable accuracy guarantee. Our algorithms are completely
sample-based so that they can be run efficiently under a deep learning framework and
can scale up to high-dimensional cases.

4.1. Normalizing flow as pushforward maps. We choose T\theta as the so-called
normalizing flow [58]. Here is a brief sketch of its structure: T\theta is written as the
composition of K invertible nonlinear transforms:

T\theta = fK \circ fK - 1 \circ \cdot \cdot \cdot \circ f2 \circ f1,

where each fk (1 \leq k \leq K) takes the form

fk(x) = x+ \sigma (wT
k x+ bk)uk.

Here wk, uk \in \BbbR d, bk \in \BbbR , and \sigma is a nonlinear function, which can be chosen as tanh,
for example. In [58], it has been shown that fk is invertible iff wT

k uk \geq  - 1. Figure 2
shows several snapshots of how a normalizing flow T\theta with length equal to 10 pushes
forward standard Gaussian distribution to a target distribution.

Fig. 2. Top row from left to right are the probability densities of distributions f1\sharp p, (f2 \circ 
f1)\sharp p, . . . , (f10 \circ f9 \circ ... \circ f1)\sharp p. The last image displays our target distribution. Bottom row displays
the pushforward effect of each single-layer transformation fk (1 \leq k \leq 10).

In a normalizing flow, the parameters are \theta = (w1, u1, b1, . . . , wK , uK , bK). The
determinant of the Jacobi matrix of T\theta , an important quantity for our schemes, can
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1404 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

be explicitly computed by

det

\biggl( 
\partial T\theta (x)

\partial x

\biggr) 
=

K\prod 

k=1

(1 + \sigma \prime (wT
k xk + bk)w

T
k uk),

where xk = fk\circ fk - 1\circ \cdot \cdot \cdot \circ f1(x). Using the structure of normalizing flow, the logarithm
of the density \rho \theta = T\theta \sharp p can be written as

log \rho \theta (x) = log p \circ T - 1
\theta (x) - 

K\sum 

k=1

log(1 + \sigma \prime (wT
k \~xk)w

T
k uk),

\~xk = fk \circ \cdot \cdot \cdot \circ f1(T - 1
\theta (x)) = f - 1

k+1 \circ \cdot \cdot \cdot \circ f - 1
K (x).

(4.2)

Then we can explicitly write the relative entropy functional H(\theta ) defined in (3.17) as

(4.3) H(\theta ) = \BbbE \bfX \sim p[V (T\theta (X)) + \scrL \theta (X)],

where \scrL \theta is defined by

\scrL \theta (\cdot ) = log p(\cdot ) - 
K\sum 

k=1

log(1 + \sigma \prime (wT
k Fk(\cdot ))wT

k uk), Fk(\cdot ) = fk \circ fk - 1 \circ \cdot \cdot \cdot \circ f1(\cdot ).

OnceH(\theta ) is computed explicitly, we can also compute the gradient\nabla \theta H(\theta ) explicitly.
In summary, we choose the normalizing flow because it has sufficient expression

power to approximate complicated distributions on \BbbR d [58], and the relative entropy
H(\theta ) has a very concise form (4.3), and its gradient can be conveniently computed.

Remark 4.1. We want to emphasize here that the normalizing flow is not the only
choice for T\theta . One may choose other network structures as long as they have sufficient
approximation power and can compute the gradient of relative entropy efficiently.

4.2. Numerical scheme. For the convenience of our presentation, we first in-
troduce the following definition.

Definition 4.2 (orthogonal projection onto space of gradient fields). Consider
vector field \vec{}v \in L2(\BbbR d;\BbbR d, \rho ). Define Proj\rho [\vec{}v] = \nabla \psi as the L2(\rho )-orthogonal projec-
tion of \vec{}v onto the subspace of gradient fields, where \psi solves

(4.4) min
\psi 

\biggl\{ \int 
| \vec{}v(x) - \nabla \psi (x)| 2\rho (x) dx

\biggr\} 
,

or equivalently \psi solves  - \nabla \cdot (\rho (x)\nabla \psi (x)) =  - \nabla \cdot (\rho (x)\vec{}v(x)).
4.2.1. Proposed double-minimization scheme. Our numerical scheme is in-

spired by the following semi-implicit scheme of (3.18):

\theta k+1  - \theta k
h

=  - G - 1(\theta k)\nabla \theta H(\theta k+1).

Equivalently, we can write it as a proximal algorithm:

(4.5) \theta k+1 = argmin
\theta 

\biggl\{ 
1

2
\langle \theta  - \theta k, G(\theta k)(\theta  - \theta k)\rangle + hH(\theta )

\biggr\} 
.
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Recall \Psi as defined in Theorem 3.4; if we denote \psi = \Psi T(\theta  - \theta k), we have \langle (\theta  - 
\theta k), G(\theta )(\theta  - \theta k)\rangle =

\int 
| \nabla \psi | 2\rho \theta k dx with the constraint that \psi solves the equation

(4.6)  - \nabla \cdot (\rho \theta k\nabla \psi (x)) =  - \nabla \cdot (\rho \theta k\partial \theta T\theta k(T - 1
\theta k

(x))(\theta  - \theta k)).

By Definition 4.2, \nabla \psi is the orthogonal projection of vector field \partial \theta T\theta k(T
 - 1
\theta k

(\cdot ))(\theta  - \theta k).
Equivalently, \psi can also be obtained by solving the least squares problem (4.4).

Based on the observation that \nabla \psi is obtained via orthogonal projection after
replacing \partial \theta T\theta k(\theta  - \theta k) by finite difference T\theta  - T\theta k , we end up with the following
double-minimization scheme for solving (4.5):

min
\theta 

\biggl\{ \biggl( \int \bigl( 
2 \nabla \phi (x) \cdot ((T\theta  - T\theta k) \circ T - 1

\theta k
(x)) - | \nabla \phi (x)| 2

\bigr) 
\rho \theta k(x) dx

\biggr) 
+ 2hH(\theta )

\biggr\} 
,

with the constraint: \phi solves min
\phi 

\biggl\{ \int 
| \nabla \phi (x) - ((T\theta  - T\theta k) \circ T - 1

\theta k
(x))| 2\rho \theta k(x) dx

\biggr\} 
.

(4.7)

Scheme (4.7) has an equivalent saddle point optimization formulation,
(4.8)

min
\theta 

max
\phi 

\biggl\{ \biggl( \int 
(2\nabla \phi (x) \cdot ((T\theta  - T\theta k) \circ T - 1

\theta k
(x)) - | \nabla \phi (x)| 2)\rho \theta k(x) dx

\biggr) 
+ 2hH(\theta )

\biggr\} 
,

which can be directly derived from (4.5) via the adjoint method. Their equivalence is
explained in the next remark.

Remark 4.3. Here we briefly demonstrate the equivalence among the three schemes
(4.5), (4.7), and (4.8). Our target function 1

2 \langle \theta  - \theta k, G(\theta k)(\theta  - \theta k)\rangle + hH(\theta ) can be
formulated as

\int 
1

2
| \nabla \psi (x)| 2\rho \theta k(x) dx+ hH(\theta ) with the constraint: \psi solves (4.6).

By introducing the dual variable \phi and applying the adjoint method, we obtain

1

2
\langle \theta  - \theta k, G(\theta k)(\theta  - \theta k)\rangle + hH(\theta )

=max
\phi 

min
\psi 

\biggl\{ \int 
1

2
| \nabla \psi (x)| 2\rho \theta kdx+ hH(\theta ) +

\int 
\phi (x)(\nabla \cdot (\rho \theta k\nabla \psi (x))

 - \nabla \cdot (\rho \theta k\partial \theta T\theta k(T - 1
\theta k

(x))(\theta  - \theta k))) dx

\biggr\} 

=max
\phi 

min
\psi 

\biggl\{ \int \biggl( 
1

2
| \nabla \psi (x)| 2  - \nabla \phi (x) \cdot \nabla \psi (x) +\nabla \phi (x) \cdot \partial \theta T\theta k(T - 1

\theta k
(x))(\theta  - \theta k)

\biggr) 

\times \rho \theta k(x) dx+ hH(\theta )

\biggr\} 

=max
\phi 

\biggl\{ \int \biggl( 
 - 1

2
| \nabla \phi (x)| 2 +\nabla \phi (x) \cdot \partial \theta T\theta k(T - 1

\theta k
(x))(\theta  - \theta k)

\biggr) 
\rho \theta k(x) dx+ hH(\theta )

\biggr\} 
.

(4.9)

In implementation, we substitute \partial \theta T\theta k(\theta  - \theta k) by T\theta  - T\theta k since the latter is tractable
in computation. As a consequence, by substituting (4.9) into (4.5) we obtain (by
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1406 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

multiplying the entire function by 2) the saddle scheme (4.8). To verify the equivalence
between (4.8) and (4.7), we check the identity
\int 
(2\nabla \phi (x) \cdot ((T\theta  - T\theta k) \circ T - 1

\theta k
(x)) - | \nabla \phi (x)| 2)\rho \theta k(x) dx

= - 
\int 

| \nabla \phi (x) - (T\theta  - T\theta k) \circ T - 1
\theta k

(x)| 2\rho \theta k(x) dx+

\int 
| (T\theta  - T\theta k) \circ T - 1

\theta k
(x)| 2\rho \theta k(x) dx

\underbrace{}  \underbrace{}  
Constant w.r.t. \phi 

.

Thus the \phi -minimization process of (4.7) is equivalent to the \phi -maximization process
of (4.8). This leads to the equivalence between (4.7) and (4.8).

Remark 4.4. Our proposed schemes (4.7), (4.8) can be viewed as an approxima-
tion to the JKO scheme (4.1), with \scrF being the relative entropy H(\theta ). To see this,
we denote

\scrE (\phi ) =
\int 
(2\nabla \phi (x) \cdot ((T\theta  - T\theta k) \circ T - 1

\theta k
(x)) - | \nabla \phi (x)| 2)\rho \theta k(x) dx

and set \^\psi = argmax\phi \scrE (\phi ). We let \vec{}vh(x) =
1
h (T\theta \circ T - 1

\theta k
(x) - x). Under mild conditions,

one can show
(4.10)

W 2
2 (\rho \theta , \rho \theta k) =W 2

2 ((Id+ h\vec{}vh)\sharp \rho \theta k , \rho \theta k) =

\int 
| \nabla \^\psi | 2\rho \theta k dx+ o(h2) = max

\phi 
\scrE (\phi ) + o(h2).

By replacing W 2
2 (\rho \theta , \rho \theta k) in (4.1) by its approximation max\phi \scrE (\phi ), we obtain the

scheme (4.7), (4.8).

Although (4.7) and (4.8) are mathematically equivalent, we use them for different
purposes. The saddle scheme (4.8) is our main tool to investigate the theoretical
properties of our proposed method in section 4.2.2, because it better reflects the
nature of our approximation method. In our implementation, as discussed in section
4.2.3, we prefer the double minimization scheme (4.7). Our experience indicates that
(4.7) makes our code run more efficiently and behave more stably than (4.8).

4.2.2. Local error of the proposed scheme. We now analyze the local error
of scheme (4.8) as well as (4.7) compared with the semi-implicit scheme (4.5). Let

us denote max\phi \scrE (\phi ) as \widehat W 2
2 (\theta , \theta k) (here \widehat W2 is treated as an approximation of L2-

Wasserstein distance (Remark 4.4)). It is straightforward to verify \widehat W2(\theta , \theta 
\prime ) \geq 0 and

\widehat W2(\theta , \theta ) = 0. Consider the following assumption:

(4.11) \widehat W 2
2 (\theta , \theta 

\prime ) \geq l(| \theta  - \theta \prime | ) for any \theta , \theta \prime \in \Theta .

Here l : \BbbR \geq 0 \rightarrow \BbbR \geq 0 satisfies l(0) = 0. l(r) is continuous, strictly increasing when
r \leq r0 for a positive r0 and is bounded below by \lambda 0 > 0 when r > r0. Notice
that this assumption generally guarantees positive definiteness of \widehat W2. Clearly, (4.11)
only depends on the structure of T\theta , and we expect that (4.11) holds for the neural
networks used as pushforward maps, including those used in this paper.

Theorem 4.5. Suppose assumption (4.11) holds true for the class of pushforward
maps \{ T\theta \} . Then the local error of scheme (4.8) is of order h2, i.e., assuming that
\theta k+1 is the optimal solution to (4.8), then

(4.12) | \theta k+1  - \theta k + hG(\theta k)
 - 1\nabla \theta H(\theta k+1)| \sim O(h2),
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or equivalently lim suph\rightarrow 0+
| \theta k+1 - \theta k+hG(\theta k)

 - 1\nabla \theta H(\theta k+1)| 
h2 < +\infty .

Before proving Theorem 4.5, we introduce some additional notation. We define

\epsilon to be a ball in parameter space as B\epsilon (\theta k) = \{ \theta | | \theta  - \theta k| \leq \epsilon \} , and we let T
(i)
\theta be

the ith component (1 \leq i \leq d) of map T\theta . For fixed \theta k and \epsilon > 0 small enough, we
assume the following two quantities are finite:

(4.13)

L(\theta k, \epsilon ) =

d\sum 

i=1

\BbbE x\sim p sup
\theta \in B\epsilon (\theta k)

\Bigl\{ 
| \partial \theta T (i)

\theta (x)| 2
\Bigr\} 
,

H(\theta k, \epsilon ) =

d\sum 

i=1

\BbbE x\sim p sup
\theta \in B\epsilon (\theta k)

\Bigl\{ 
\| \partial 2\theta \theta T (i)

\theta (x)\| 22
\Bigr\} 
.

To prove Theorem 4.5, we need the following three lemmas.

Lemma 4.6. Suppose we fix \theta 0 \in \Theta ; for arbitrary \theta \in \Theta and \nabla \phi \in L2(\BbbR d;\BbbR d, \rho \theta 0)
we consider
(4.14)

F (\theta ,\nabla \phi | \theta 0) =
\biggl( \int 

(2\nabla \phi (x) \cdot (T\theta  - T\theta 0) \circ T - 1
\theta 0

(x) - | \nabla \phi (x)| 2) \rho \theta 0(x) dx
\biggr) 
+2hH(\theta ).

Then F (\theta ,\nabla \phi | \theta 0) <\infty , and furthermore F (\cdot ,\nabla \phi | \theta 0) \in C1(\Theta ). We can compute

(4.15) \partial \theta F (\theta ,\nabla \phi | \theta 0) = 2

\biggl( \int 
\partial \theta T\theta (T

 - 1
\theta 0

(x))T \nabla \phi (x) \rho \theta 0(x) dx+ h \nabla \theta H(\theta )

\biggr) 
.

Lemma 4.7. Suppose we fix \theta 0 \in \Theta and define

J(\theta ) = sup
\nabla \phi \in L2(\BbbR d;\BbbR d,\rho \theta 0 )

F (\theta ,\nabla \phi | \theta 0).

Then J is differentiable. If we denote \^\psi \theta = argmax\phi \{ F (\theta ,\nabla \phi | \theta 0)\} , then

\nabla \theta J(\theta ) = \partial \theta F (\theta ,\nabla \^\psi \theta | \theta 0) = 2

\biggl( \int 
\partial \theta T\theta (T

 - 1
\theta 0

(x))T \nabla \^\psi \theta (x) \rho \theta 0(x) dx+ h \nabla \theta H(\theta )

\biggr) 
.

This lemma is an analogy of the envelope theorem [1] under our problem setting.

Lemma 4.8. Under assumption (4.11), the optimal solution of (4.8) \theta k+1 satisfies

| \theta k+1  - \theta k| \sim o(1), i.e., lim
h\rightarrow 0+

| \theta k+1  - \theta k| = 0.

This lemma provides an a priori estimation of | \theta k+1  - \theta k| .
We prove Lemmas 4.6, 4.7, and 4.8 in Appendix C.

Proof of Theorem 4.5. Let us consider F (\theta ,\nabla \phi | \theta k). We denote

\nabla \^\psi \theta = argmax
\nabla \phi \in L2(\BbbR d;\BbbR d,\rho \theta k )

\{ F (\theta ,\nabla \phi | \theta k)\} .

Then we can set

\nabla \^\psi \theta = Proj\rho \theta k
[(T\theta  - T\theta k) \circ T - 1

\theta k
] and J(\theta ) = sup

\nabla \phi \in L2(\BbbR d;\BbbR d,\rho \theta k )

F (\theta ,\nabla \phi | \theta k).
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1408 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

Applying Lemma 4.7, we obtain

\nabla \theta J(\theta ) = 2

\biggl( \int 
\partial \theta T\theta (T

 - 1
\theta k

(x))T \nabla \^\psi \theta (x) \rho \theta k(x) dx+ h \nabla \theta H(\theta )

\biggr) 
.

Due to the differentiability of J(\theta ), at the optimizer \theta k+1, the gradient must vanish,
i.e.,

(4.16)

\biggl( \int 
\partial \theta T\theta k+1

(T - 1
\theta k

(x))T \nabla \^\psi \theta k+1
(x) \rho \theta k(x) dx

\biggr) 
+ h\nabla \theta H(\theta k+1) = 0.

We use Taylor expansion at \theta k+1 to get T\theta k+1
 - T\theta k = \partial \theta T\theta k(\theta k+1 - \theta k)+R(\theta k+1, \theta k),

in which R(\theta , \theta \prime )(\cdot ) \in L2(\BbbR d;\BbbR m, \rho \theta k), and the ith entry of R(\theta , \theta \prime ) is Ri(\theta , \theta \prime )(x) =
1
2 (\theta  - \theta \prime )T\partial 2\theta \theta T

(i)
\~\theta i(x)

(x)(\theta  - \theta \prime ), 1 \leq i \leq m, where each \~\theta i(x) = \lambda i(x)\theta + (1 - \lambda i(x))\theta 
\prime 

for some \lambda i(x) \in [0, 1]. Then we can write

(4.17)
\nabla \^\psi \theta k+1

= Proj\rho \theta k
[(T\theta k+1

 - T\theta k) \circ T - 1
\theta k

]

= Proj\rho \theta k
[\partial \theta T\theta k \circ T - 1

\theta k
(\theta k+1  - \theta k)] + Proj\rho \theta k

[R(\theta k+1, \theta k) \circ T - 1
\theta k

].

On the other hand,

(4.18) \partial \theta T\theta k+1
= \partial \theta T\theta k + r(\theta k+1, \theta k).

Here r(\theta , \theta \prime ) \in L2(\BbbR d;\BbbR d\times m, \rho \theta k), and the (i, j)th entry of r(\theta , \theta \prime )(x) is (\theta k+1  - 
\theta k)

T\partial \theta (\partial \theta jT
(i)
\~\theta ij(x)

(x)), 1 \leq i \leq d, 1 \leq j \leq m, where each \~\theta ij(x) = \mu ij(x)\theta k+1 +

(1 - \mu ij(x))\theta k for some \mu ij(x) \in (0, 1). Applying (4.18), (4.17) to (4.16), we obtain

\int 
\partial \theta T\theta k(T

 - 1
\theta k

(x))TProj\rho \theta k
[\partial \theta T\theta k \circ T - 1

\theta k
(x)(\theta k+1  - \theta k)] \rho \theta k(x) dx

+

\int 
\partial \theta T\theta k(T

 - 1
\theta k

(x))TProj\rho \theta k
[R(\theta k+1, \theta k) \circ T - 1

\theta k
](x) \rho \theta k(x) dx

+

\int 
r(\theta k+1, \theta k)(T

 - 1
\theta k

(x))TProj\rho \theta k
[(T\theta k+1

 - T\theta k) \circ T - 1
\theta k

](x) \rho \theta k(x) dx =  - h\nabla \theta H(\theta k+1).

(4.19)

Recalling the definition of \Psi in Theorem 3.4, and using (3.3) in Lemma 3.3, we know
that the first term on the left-hand side of (4.19) equals

\int 
\nabla \Psi (x)\nabla \Psi (x)T(\theta k+1  - \theta k) \rho \theta k(x) dx = G(\theta k)(\theta k+1  - \theta k).

By applying the Cauchy--Schwarz inequality and (3.4) in Lemma 3.3, we bound the
ith entry of the second term in (4.19) by

\Biggl( \int 
| \partial \theta T (i)

\theta k
(x)| 2 dp(x) \cdot 

\int d\sum 

i=1

| (\theta k+1  - \theta k)\partial 
2
\theta \theta T

(i)
\~\theta i(x)

(x)(\theta k+1  - \theta k)| 2 dp(x)
\Biggr) 1

2

\leq 
\Biggl( 
\BbbE p| \partial \theta T (i)

\theta k
(x)| 2 \cdot \BbbE p

\Biggl[ 
d\sum 

i=1

\| \partial 2\theta \theta T (i)
\~\theta i(x)

(x)\| 2
\Biggr] \Biggr) 1

2

| \theta k+1  - \theta k| 2 denote as
= A(i)| \theta k+1  - \theta k| 2.
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To bound the third term in (4.19), we consider the ith entry of T\theta k+1
(x)  - T\theta k(x),

which can be written as

T
(i)
\theta k+1

(x) - T
(i)
\theta k

(x) = \partial \theta T\=\theta i(x)(x)(\theta k+1  - \theta k),

where \=\theta i(x) = \zeta i(x)\theta k+1 + (1 - \zeta i(x))\theta k for some \zeta i(x) \in (0, 1). The ith entry of the
third term of (4.19) can be bounded by

\Biggl( \int d\sum 

i=1

| (\theta k+1  - \theta k)
T\partial \theta \theta T

(i)
\~\theta ij(x)

(x)| 2 dp(x) \cdot 
\int 

| T (i)
\theta k+1

(x) - T
(i)
\theta k

(x)| 2 dp(x)
\Biggr) 1

2

\leq 
\Biggl( 
\BbbE p

\Biggl[ 
d\sum 

i=1

\| \partial 2\theta \theta T\~\theta ij(x)
(x)\| 22

\Biggr] 
\cdot \BbbE p| \partial \theta T (i)

\=\theta i(x)
(x)| 2

\Biggr) 1
2

| \theta k+1  - \theta k| 2 denote as
= B(i)| \theta k+1  - \theta k| 2.

We denote A \in \BbbR m with entries A(i), 1 \leq i \leq m, and similarly B \in \BbbR m with entries
B(i), 1 \leq i \leq m. Equation (4.19) leads to the following inequality:

| \theta k+1  - \theta k + hG(\theta k)
 - 1\nabla \theta H(\theta k+1)| \leq \| G(\theta k) - 1\| 2(| A| + | B| ) | \theta k+1  - \theta k| 2.

As we have shown in Lemma 4.8 that | \theta k+1  - \theta k| \sim o(1) for any \epsilon > 0 when step size
h is small enough, we always have \theta k+1 \in B\epsilon (\theta k). Recalling the notation in (4.13),
we have | A| , | B| \leq 

\sqrt{} 
L(\theta k, \epsilon )H(\theta k, \epsilon ). Thus we have

| \theta k+1  - \theta k + hG(\theta k)
 - 1\nabla \theta H(\theta k+1)| \leq 2

\sqrt{} 
L(\theta k, \epsilon )H(\theta k, \epsilon )\| G(\theta k) - 1\| 2| \theta k+1  - \theta k| 2.

Denote \theta k+1 - \theta k = \eta , G(\theta k)
 - 1\nabla \theta H(\theta k+1) = \xi , and C = 2

\sqrt{} 
L(\theta k, \epsilon )H(\theta k, \epsilon )\| G(\theta k) - 1\| 2;

the previous inequality is

(4.20) | \eta  - h \xi | \leq C| \eta | 2.

Since | \eta  - h\xi | \geq | \eta |  - h| \xi | , we have

(4.21) C| \eta | 2 \geq | \eta |  - h| \xi | .

Solving (4.21) gives

| \eta | \leq 2| \xi | h
1 +

\sqrt{} 
1 - 4C| \xi | h

or | \eta | > 1 +
\sqrt{} 

1 - 4Ch| \xi | 
2C

.

The second inequality leads to | \theta k+1  - \theta k| > 1
2C for any h > 0, which avoids | \theta k+1  - 

\theta k| \sim o(1). Thus, when h is sufficiently small, we have

(4.22) | \eta | \leq 2| \xi | h
1 +

\sqrt{} 
1 - 4C| \xi | h

.

Combining (4.22) and (4.20), we have

(4.23) | \theta k+1  - \theta k + hG(\theta k)
 - 1\nabla \theta H(\theta k+1)| \leq 

4 C | \xi | 2
(1 +

\sqrt{} 
1 - 4C| \xi | h)2

h2 \leq 4C| \xi | 2h2.

This proves the result.
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1410 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

Remark 4.9. One may be aware of the relation between the positive definite con-
dition (4.11) and the positive definiteness of the metric tensor G(\theta k). A positive

definite G(\theta ) guarantees the inequality \widehat W 2
2 (\theta , \theta 

\prime ) \geq C| \theta  - \theta \prime | 2 for \theta \prime \in Br0(\theta ) (r0
depends on \theta is small enough). However, we are not able to bound \widehat W 2

2 (\theta , \theta 
\prime ) from

below when | \theta  - \theta \prime | > r0. On the other hand, (4.11) is a locally weaker condition than
the positive definiteness of G(\theta ).

4.2.3. Implementation. As mentioned in section 4.2.1, we prefer double-mini-
mization scheme (4.7) over saddle scheme (4.8). We will thus implement scheme (4.7).
Let us denote

J(\theta ) =

\biggl( \int \Bigl( 
2 \nabla \^\psi (T\theta k(x)) \cdot ((T\theta (x) - T\theta k(x))) - | \nabla \^\psi (T\theta k(x))| 2

\Bigr) 
dp(x)

\biggr) 
+ 2hH(\theta ),

(4.24)

with \^\psi = argmin
\phi 

\biggl\{ \int 
| \nabla \phi (T\theta k) - (T\theta (x) - T\theta k(x))| 2dp(x)

\biggr\} 
.

(4.25)

We then solve ODE (3.18) at tk by solving

(4.26) \theta k+1 = argmin
\theta 

J(\theta ).

Here we provide some detailed discussion on our implementation.
\bullet In our numerical computation, we approximate \phi by \psi \nu : M \rightarrow \BbbR , which
is a ReLU neural network [17]. Here \nu denotes the parameter vector of the
network \psi \nu . We know that in this case \psi \nu is a piecewise affine function and
its gradient \nabla \psi \nu (\cdot ) forms a piecewise constant vector field.

\bullet The entire procedure of solving (4.26) can be formulated as nested loops:
-- (inner loop) Every inner loop aims at solving (4.25) on ReLU functions
\psi \nu , i.e., solving

(4.27) min
\nu 

\bigl\{ 
\BbbE \bfitX \sim p| \nabla \psi \nu (T\theta k(\bfitX )) - (T\theta (\bfitX ) - T\theta k(\bfitX ))| 2

\bigr\} 
.

One can use stochastic gradient descent (SGD) methods like RMSProp
[62] or Adam [26] with learning rate \alpha in to deal with this inner loop
optimization. In our implementation, we will stop after Min iterations.
Let us denote the optimal \nu in each inner loop as \^\nu .

-- (outer loop) We apply a similar SGD method to J(\theta ): using Lemma 4.7,
we are able to compute \nabla \theta J(\theta ) as

\nabla \theta J(\theta ) = \partial \theta 

\biggl( \biggl( \int 
2\nabla \^\psi (x) \cdot (T\theta \circ T - 1

\theta k
(x))\rho \theta k(x) dx

\biggr) 
+ 2hH(\theta )

\biggr) 
.

If we treat optimal \^\psi as \psi \^\nu , what we need to do in each outer loop is to
consider

(4.28) \~J(\theta ) = \BbbE \bfitX \sim p 2[\nabla \psi \^\nu (T\theta k(\bfitX )) \cdot T\theta (\bfitX )]+2h[V (T\theta (\bfitX ))+\scrL \theta (\bfitX )]

and update \theta for one step by our chosen SGD method with learning rate
\alpha out applied to optimize \~J(\theta ). In our actual computation, we will stop
the outer loop after Mout iterations.
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\bullet We now present the entire algorithm for computing (3.18) based on the scheme
(4.7) in Algorithm 4.1. This algorithm contains the following parameters:
T,N ;Mout,Kout, \alpha out;Min,Kin, \alpha in. Recall that we set reference distribution
p as standard Gaussian on M = \BbbR d.

Algorithm 4.1 Computing (3.18) by scheme (4.8) on the time interval [0, T ].

1: Initialize \theta 
2: for i = 1, . . . , N do
3: Save current parameter value to \theta 0: \theta 0 = \theta 
4: for j = 1, . . . ,Mout do
5: for p = 1, . . . ,Min do
6: Sample \{ X1, . . . ,XKin

\} from p
7: Apply one SGD (Adam) step with learning rate \alpha in to loss function of

variable \lambda .

1

Kin

\Biggl( 
Kin\sum 

k=1

| \nabla \psi \nu (T\theta 0(Xk)) - (T\theta (Xk) - T\theta 0(Yk))| 2
\Biggr) 

8: end for
9: Sample \{ X1, . . . ,XKout

\} from p
10: Apply one SGD (Adam) step with learning rate \alpha out to loss function of vari-

able \theta .

1

Kout

\Biggl( 
Kout\sum 

k=1

2[\nabla \psi \nu (T\theta 0(\bfitX k)) \cdot T\theta (\bfitX k)] + 2h[V (T\theta (\bfitX k)) + \scrL \theta (\bfitX k)]

\Biggr) 

11: end for
12: Set \theta i = \theta 
13: end for
14: The sequence of probability densities \{ T\theta 0 \sharp p, T\theta 1 \sharp p, . . . , T\theta N \sharp p\} will be the numer-

ical solution of \{ \rho t0 , \rho t1 , . . . , \rho tN \} , where ti = i TN (i = 0, 1, . . . , N  - 1, N). Here \rho t
solves the original Fokker--Planck equation (2.2).

Remark 4.10 (rescaling). In our implementation, T\theta (\bfitX )  - T\theta k(\bfitX ) is usually of
order O(\alpha out), which is a small quantity. We can rescale it so that each inner loop
can be solved in a more stable way with larger step size (learning rate). That is to
say, we choose some small \epsilon \sim O(\alpha out) and consider
(4.29)

min
\theta 

max
\phi 

\left\{ 
    
    

\biggl( \int \biggl( 
2\nabla \phi (x)\cdot 

\biggl( 
1

\epsilon 
(T\theta  - T\theta k) \circ T - 1

\theta k
(x)

\biggr) 
 - | \nabla \phi (x)| 2

\biggr) 
\rho \theta k(x) dx

\biggr) 

\underbrace{}  \underbrace{}  
\scrE \epsilon (\phi )

+
2h

\epsilon 2
H(\theta )

\right\} 
    
    
.

We can also check

argmax \scrE \epsilon (\phi )=Proj\rho \theta k

\biggl[ 
1

\epsilon 
(T\theta  - T\theta k) \circ T - 1

\theta k

\biggr] 
=

1

\epsilon 
Proj\rho \theta k

[(T\theta  - T\theta k)\circ T - 1
\theta k

]=
1

\epsilon 
argmax \scrE (\phi ).

Using this, we are able to verify max\phi \scrE \epsilon (\phi ) = 1
\epsilon 2 max\phi \scrE (\phi ). Thus the optimal
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1412 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

solution of (4.29) is

argmin\theta 

\biggl\{ 
1

\epsilon 2
max
\phi 

\scrE (\phi ) + 2h

\epsilon 2
H(\theta )

\biggr\} 
= argmin\theta 

\biggl\{ 
max
\phi 

\scrE (\phi ) + 2hH(\theta )

\biggr\} 
.

This shows the equivalence between the modified scheme (4.29) and the original
scheme (4.8).

In our actual implementation, we still prefer the double-minimization scheme. We
solve

(4.30) min
\nu 

\Biggl\{ 
\BbbE \bfitX \sim p

\bigm| \bigm| \bigm| \bigm| \nabla \psi \nu (T\theta k(\bfitX )) - 
\biggl( 
T\theta (\bfitX ) - T\theta k(\bfitX )

\epsilon 

\biggr) \bigm| \bigm| \bigm| \bigm| 
2
\Biggr\} 

instead of (4.27) in each inner loop and set

(4.31) \~J(\theta ) = \BbbE \bfitX \sim p 2[\nabla \psi \^\nu (T\theta k(\bfitX )) \cdot T\theta (\bfitX )] +
2h

\epsilon 
[V (T\theta (\bfitX )) + \scrL \theta (\bfitX )]

in each outer loop. In actual experiments, we set \epsilon = \alpha out.

Remark 4.11 (sufficiently large sample size). It is worth mentioning that the sam-
ple size Kin,Kout in each SGD step (especially Kin) should be chosen reasonably large
so that the inner optimization problem can be solved with enough accuracy. In prac-
tice, we usually choose Kin = Kout = max\{ 1000, 300d\} . Here d is the dimension of
sample space. This is very different from the small batch technique applied to training
the neural network in deep learning [43].

Remark 4.12 (using fixed samples). Our numerical experiments indicate that the
same samples can be used for both the inner and outer iterations, which may reduce
the computational cost of our original algorithm.

5. Asymptotic properties and error estimations. In this section, we estab-
lish numerical analysis for the parametric Fokker--Planck equation (3.18).

5.1. An important quantity. Before our analysis, we introduce an important
quantity that plays an essential role in our numerical analysis. Let us recall the
optimal value of the least squares problem (3.19) in Theorem 3.8 of section 3.2, or
equivalently (3.20) of section 3.2, and (3.25) of section 3.3. If we denote the upper
bound of all possible values to be \delta 0, i.e.,

(5.1) \delta 0 = sup
\theta \in \Theta 

min
\xi \in \BbbR m

\left\{ 
 
 

\int \bigm| \bigm| \bigm| \bigm| \bigm| 
M\sum 

k=1

\xi k\nabla \psi k(x) - \nabla (V (x) +D log \rho \theta (x))

\bigm| \bigm| \bigm| \bigm| \bigm| 

2

\rho \theta (x)dx

\right\} 
 
 ,

where \psi k are solutions to (3.6) in Theorem 3.4, then this quantity provides a crucial
error bound between our parametric equation and original equation in the forthcoming
analysis. Ideally, we hope \delta 0 to be sufficiently small. This can be guaranteed if the
neural network we select has universal approximation power. \delta 0 can be bounded by
another constant with a more approachable form:

(5.2) \^\delta 0 = sup
\theta \in \Theta 

min
\xi \in \BbbR m

\left\{ 
 
 

\int \bigm| \bigm| \bigm| \bigm| \bigm| 
M\sum 

k=1

\xi k
\partial T\theta (x)

\partial \theta k
 - \nabla (V (x) +D log \rho \theta (x))

\bigm| \bigm| \bigm| \bigm| \bigm| 

2

\rho \theta (x)dx

\right\} 
 
 .

By (3.4) of Lemma 3.3, one can verify \delta 0 \leq \^\delta 0. From (5.2), we observe that \^\delta 0 is
determined by the optimal linear combination of \{ \partial T\theta 

\partial \theta k
\} Mk=1 to approximate the vector
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field \nabla (V +D log \rho \theta ). One may understand this approximation from three different
aspects:

\bullet If T\theta is chosen as a linear combination of basis functions, i.e., T\theta (x) =\sum M
k=1 \theta k\Phi k(x), we can give an explicit estimate on \^\delta 0. For example, if \Phi k(x)

is picked as the Fourier basis and \nabla (V +D log \rho \theta ) \in Hs (s > 1), the classical

spectral method theory can be applied to obtain an estimate \^\delta 0 = O(M - s)
[49, 66]. If the radial basis function is selected, a related approximation
bounded can be obtained too [9].

\bullet Having a small value for \^\delta 0 as well as \delta 0 is equivalent to finding a suitable T\theta 
such that a specific vector field \nabla (V + D log \rho \theta ) can be accurately approx-
imated in our estimate. In other words, when neural networks are used for
T\theta , one needs to pick a neural network structure such that it can approxi-
mate \nabla (V +D log \rho \theta ) well. This seems to be an easier question than the task
for the so-called universal approximation theory for neural networks, which
requires T\theta to approximate an arbitrary function in a space.

\bullet In our implementation, we use normalizing flows, a special type of deep neu-
ral network. Our numerical examples seem to show promising performance.
In the existing literature, although there are several references providing the
universal approximation power of neural networks [72, 15], the results are
mainly focused on general ReLU networks and on the approximation power
of function value, which is different from our case. To the best of our knowl-
edge, there is no existing study discussing explicit bounds for vector field
approximation by deep neural networks. We believe that the question of how
\delta 0 or \^\delta 0 explicitly depends on the structure of T\theta is a fundamental research
problem that deserves careful investigations.

It is also worth mentioning that \delta 0 is used for an a priori estimate in this section,
because we don't know the exact trajectory of \{ \theta t\} when solving ODE (3.18), and we
take the supremum over \Theta to obtain \delta 0. Once solved for \{ \theta t\} , denote by \scrC the set
covering its trajectory, i.e.,

(5.3) \scrC = \{ \theta | \exists t \geq 0, s.t. \theta = \theta t\} .

We define another quantity, \delta 1:

(5.4) \delta 1 = sup
\theta \in \scrC 

min
\xi \in \scrT \theta \Theta 

\biggl\{ \int 
| \nabla \Psi (T\theta (x))

T\xi  - \nabla (V +D log \rho \theta ) \circ T\theta (x)| 2 dp(x)
\biggr\} 
.

Clearly, we have \delta 1 \leq \delta 0. We can obtain corresponding posterior estimates for the
asymptotic convergence and error analysis by replacing \delta 0 with \delta 1.

5.2. Asymptotic convergence analysis. In this section, we consider the so-
lution \{ \theta t\} t\geq 0 of our parametric Fokker--Planck equation (3.18). We define

\scrV =

\Biggl\{ 
V

\bigm| \bigm| \bigm| \bigm| \bigm| 
V \in \scrC 2(\BbbR d), V can be decomposed as V = U + \phi , with U, \phi \in \scrC 2(\BbbR d);

\nabla 2U \succeq KI with K > 0 and \phi \in L\infty (\BbbR d)

\Biggr\} 
.

As we know, for the Fokker--Planck equation (2.2), when the potential V \in \scrV , \{ \rho t\} will
converge to the Gibbs distribution \rho \ast = 1

ZD
e - V (x)/D as t\rightarrow \infty under the measure of

KL divergence [20]. For (3.18), we wish to study its asymptotic convergence property.
We come up with the following result.
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1414 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

Theorem 5.1 (a priori estimation on asymptotic convergence). Consider the
Fokker--Planck equation (2.2) with the potential V \in \scrV . Suppose \{ \theta t\} solves the
parametric Fokker--Planck equation (3.18), and denote \delta 0 as in (5.1). Let \rho \ast (x) =
1
ZD
e - V (x)/D be the Gibbs distribution of original equation (2.2). Then we have the

inequality

(5.5) \scrD KL(\rho \theta t\| \rho \ast ) \leq 
\delta 0

\~\lambda DD2
(1 - e - D

\~\lambda Dt) +\scrD KL(\rho \theta 0\| \rho \ast )e - D
\~\lambda Dt.

Here \~\lambda D > 0 is the constant associated to the logarithmic Sobolev inequality discussed
in Lemma 5.2 with potential function 1

DV .

To prove Theorem 5.1, we need the following two lemmas.

Lemma 5.2 (Holley--Stroock perturbation). Suppose the potential V \in \scrV is de-
composed as V = U + \phi , where \nabla 2U \succeq KI and \phi \in L\infty . Let \~\lambda = Ke - osc(\phi ), where
osc(\phi ) = sup\phi  - inf \phi . Then the following logarithmic Sobolev inequality holds for
any probability density \rho :

(5.6) \scrD KL(\rho \| \rho \ast ) \leq 
1
\~\lambda 
\scrI (\rho | \rho \ast ).

Here \rho \ast = 1
Z e

 - V and \scrI (\rho | \rho \ast ) is the Fisher information functional defined as

\scrI (\rho | \rho \ast ) =
\int \bigm| \bigm| \bigm| \nabla log

\biggl( 
\rho (x)

\rho \ast (x)

\biggr) \bigm| \bigm| \bigm| 
2

\rho (x) dx.

Lemma 5.2 was first proved in [20].

Lemma 5.3. For any \theta \in \Theta , we have

(5.7) D2 \scrI (\rho \theta | \rho \ast ) \leq \delta 0 +\nabla \theta H(\theta ) \cdot G(\theta ) - 1\nabla \theta H(\theta ),

where \delta 0 is defined in (5.1).

Proof of Lemma 5.3. Let us denote \xi = G(\theta ) - 1\nabla \theta H(\theta ) for convenience. Sup-
pose \{ \theta t\} solves (3.18) with \theta 0 = \theta . By Theorem 3.7, d

dt\rho \theta t
\bigm| \bigm| 
t=0

=  - (T\theta \sharp )\ast \xi is an

orthogonal projection of  - gradW\scrH (\rho \theta ) onto \scrT \rho \theta \scrP with respect to metric gW . Thus
the orthogonal relation gives

gW ( - gradW\scrH (\rho \theta ), - gradW\scrH (\rho \theta ))= gW (gradW\scrH (\rho \theta ) - (T\theta \sharp )\ast \xi , gradW\scrH (\rho \theta ) - (T\theta \sharp )\ast \xi )

+ gW ((T\theta \sharp )\ast \xi , (T\theta \sharp )\ast \xi ).(5.8)

One can verify that the left-hand side of (5.8) is
(5.9)

gW ( - gradW\scrH (\rho \theta ), - gradW\scrH (\rho \theta )) =

\int 
| \nabla (V (x)+D log \rho \theta (x))| 2\rho (x) dx = D2 \scrI (\rho \theta | \rho \ast ).

Recalling the equivalence between (3.19) and (3.20) and the definition of \delta 0 in (5.1),
we know that the first term on the right-hand side of (5.8) has an upper bound,

(5.10) gW (gradW\scrH (\rho \theta ) - (T\theta \sharp )\ast \xi , gradW\scrH (\rho \theta ) - (T\theta \sharp )\ast \xi ) \leq \delta 0.

The second term on the right-hand side of (5.8) is

gW ((T\theta \sharp )\ast \xi , (T\theta \sharp )\ast \xi ) = (T\theta \sharp )
\ast gW (\xi , \xi ) = G(\theta )(G(\theta ) - 1\nabla \theta H(\theta ), G(\theta ) - 1\nabla \theta H(\theta ))

= \nabla \theta H(\theta ) \cdot G(\theta ) - 1\nabla \theta H(\theta ).(5.11)

Combining (5.8), (5.9), (5.10), and (5.11) yields (5.7).
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NEURAL PARAMETRIC FOKKER--PLANCK EQUATION 1415

Proof of Theorem 5.1. Let us recall the relationship between KL divergence and
relative entropy,

\scrD KL(\rho \| \rho \ast ) =
1

D
\scrH (\rho ) + log(ZD).

Actually, we can treat \scrD KL(\rho \theta \| \rho \ast ) as a Lyapunov function for our ODE (3.18), be-
cause by taking the time derivative of \scrD KL(\rho \theta t\| \rho \ast ), we obtain

d

dt
\scrD KL(\rho \theta t\| \rho \ast ) =

1

D

d

dt
\scrH (\rho \theta t) =

1

D
\.\theta t \cdot \nabla H(\theta t) =  - 1

D
\nabla H(\theta t) \cdot G - 1(\theta t)\nabla H(\theta t).

Using the inequality in Lemma 5.3, we are able to show that

d

dt
\scrD KL(\rho \theta t\| \rho \ast ) \leq 

\delta 0
D

 - D \scrI (\rho \theta t | \rho \ast ).

By Lemma 5.2, we have

d

dt
\scrD KL(\rho \theta t\| \rho \ast ) \leq 

\delta 0
D

 - D \~\lambda D \scrD KL(\rho \theta t\| \rho \ast ).

Therefore we obtain, by Gronwall's inequality, the following estimate:

\scrD KL(\rho \theta t\| \rho \ast ) \leq 
\delta 0

\~\lambda DD2
(1 - e - D

\~\lambda Dt) +\scrD KL(\rho \theta 0\| \rho \ast )e - D
\~\lambda Dt.

Remark 5.4. Following the previous proof, we can show a similar convergence
estimation for the solution \{ \rho t\} t\geq 0 of (2.2). Such a result was first discovered in [7].

(5.12) \scrD KL(\rho t\| \rho \ast ) \leq \scrD KL(\rho 0\| \rho \ast ) e - D\~\lambda Dt \forall t > 0.

A nominal modification of our proof for Theorem 5.1 leads to an a posteriori ver-
sion of our asymptotic convergence analysis, which is stated in the following theorem.

Theorem 5.5 (a posteriori estimation on asymptotic convergence).

\scrD KL(\rho \theta t\| \rho \ast ) \leq 
\delta 1

\~\lambda DD2
(1 - e - D

\~\lambda Dt) +\scrD KL(\rho \theta 0\| \rho \ast )e - D
\~\lambda Dt,

where \delta 1 is defined in (5.4).

5.3. Wasserstein error estimations. In this subsection, we establish our error
bounds for both continuous and discrete versions of the parametric Fokker--Planck
equation (3.18) as approximations to the original equation (2.2).

5.3.1. Wasserstein error for the parametric Fokker--Planck equation.
The following theorem provides an upper bound between the solutions of (2.2) and
(3.18).

Theorem 5.6. Assume that \{ \theta t\} t\geq 0 solves (3.18) and \{ \rho t\} t\geq 0 solves (2.2). If the
Hessian of the potential function V in (2.2) is bounded below by a constant \lambda , i.e.,
\nabla 2V \succeq \lambda I, the 2-Wasserstein difference between \rho t and \rho \theta t can be bounded as

(5.13) W2(\rho \theta t , \rho t) \leq \Omega \lambda (t) =

\Biggl\{ \surd 
\delta 0
\lambda (1 - e - \lambda t) + e - \lambda tW2(\rho \theta 0 , \rho 0) if \lambda \not = 0,\surd 
\delta 0t+W2(\rho \theta 0 , \rho 0) if \lambda = 0.
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1416 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

\scrP 

\rho 0

\rho t ( or \=\rho 1)

\rho \theta 0
\rho \theta t (or \=\rho 0)

 - gradW\scrH (\rho \theta t)

\.\rho t =  - gradW\scrH (\rho t)

\.\rho \theta t =  - gradW\scrH (\rho \theta t)| \scrP (\Theta )

\.\=\rho 1

 - \.\=\rho 0\scrP \Theta 

\{ \rho s\} s\geq 0

\{ \rho \theta s\} s\geq 0

\{ \=\rho \tau \} 0\leq \tau \leq 1

\scrT \rho \theta t\scrP \Theta 

Fig. 3. An illustrative diagram for the proof of Theorem 5.6.

To prove this inequality, we need the following lemmas.

Lemma 5.7 (constant speed of geodesic). The geodesic connecting \rho 0, \rho 1 \in \scrP (M)
is described by

(5.14)

\Biggl\{ 
\partial \rho t
\partial t +\nabla \cdot (\rho t\nabla \psi t) = 0,
\partial \psi t

\partial t + 1
2 | \nabla \psi t| 2 = 0,

\rho t| t=0 = \rho 0, \rho t| t=1 = \rho 1.

Using the notation \.\rho t = \partial t\rho t =  - \nabla \cdot (\rho t\nabla \psi t) \in \scrT \rho t\scrP (M), gW ( \.\rho t, \.\rho t) is constant for
0 \leq t \leq 1 and gW ( \.\rho t, \.\rho t) =W 2

2 (\rho 0, \rho 1) for 0 \leq t \leq 1.

Lemma 5.8 (displacement convexity of relative entropy). Suppose \{ \rho t\} solves
(5.14), and the relative entropy \scrH in (2.8) has potential V satisfying \nabla 2V \succeq \lambda I; then

we have d
dtg

W (gradW\scrH (\rho t), \.\rho t) \geq \lambda W 2
2 (\rho 0, \rho 1), or equivalently

d2

dt2\scrH (\rho t) \geq \lambda W 2
2 (\rho 0, \rho 1).

Lemma 5.7 originates from section 7.2 of [4]. A generalization of it has been proved
in Lemma 5 of [40]. A more general version on the displacement convexity related
to Lemma 5.8 was discussed in Chapters 16 and 17 of [68]. To be self-contained, we
provide direct proofs of both Lemma 5.7 and Lemma 5.8 in Appendix D.

Proof of Theorem 5.6. Figure 3 provides a sketch of our proof: For a given time
t, the geodesic \{ \=\rho \tau \} 0\leq \tau \leq 1 on Wasserstein manifold \scrP (M) that connects \rho \theta t and \rho t
satisfies the geodesic equations (5.14). If differentiating W 2

2 (\rho \theta t , \rho t) with respect to
time t according to Theorem 23.9 of [68], we are able to deduce that

(5.15)
d

dt
W 2

2 (\rho \theta t , \rho t) = 2gW ( \.\rho \theta t , - \.\=\rho 0) + 2gW ( \.\rho t, \.\=\rho 1),

in which \.\=\rho 0 = \partial \tau \=\rho \tau | \tau =0 =  - \nabla \cdot (\=\rho 0\nabla \psi 0), \.\=\rho 1 = \partial \tau \=\rho \tau | \tau =1 =  - \nabla \cdot (\=\rho 1\nabla \psi 1). Notice that

\.\rho \theta t = (T\theta \sharp )\ast \.\theta t, \.\rho t =  - gradW\scrH (\rho t) = \nabla \cdot (\rho t\nabla (V +D log \rho t)).
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NEURAL PARAMETRIC FOKKER--PLANCK EQUATION 1417

Using the definition (2.5) of Wasserstein metric, we can compute the following (recall
that \rho \theta t = \=\rho 0, \rho t = \=\rho 1):

gW ( \.\rho \theta t , \.\=\rho 0) =

\int 
\nabla (V +D log \=\rho 0)\cdot \psi 0 \=\rho 0 dx gW ( \.\rho t, \.\=\rho 1) =

\int 
\nabla (V +D log \=\rho 1)\cdot \psi 1 \=\rho 1 dx.

Now we can write (5.15) as

1

2

d

dt
W 2

2 (\rho \theta t , \rho t) = gW ((T\theta t\sharp )\ast \.\theta t + gradW\scrH (\rho \theta t), - \.\=\rho 0) + gW ( - gradW\scrH (\rho \theta t), - \.\=\rho 0)

+ gW ( - gradW\scrH (\rho t), \.\=\rho 1)

set: \xi = - \.\theta t
= gW (gradW\scrH (\rho \theta t) - (T\theta t\sharp )\ast \xi ,  - \.\=\rho 0)

 - (gW (gradW\scrH (\=\rho 1), \.\=\rho 1) - gW (gradW\scrH (\=\rho 0), \.\=\rho 0)).(5.16)

For the first term in (5.16), we use the Cauchy--Schwarz inequality, (5.1), and Lemma
5.7, which implies g( \.\=\rho 0, \.\=\rho 0) =W 2

2 (\rho \theta t , \rho t), to obtain

gW (gradW\scrH (\rho \theta t) - (T\theta t\sharp )\ast \xi , - \.\=\rho 0)

\leq 
\sqrt{} 
gW (gradW\scrH (\rho \theta t) - (T\theta t\sharp )\ast \xi , gradW\scrH (\rho \theta t) - (T\theta t\sharp )\ast \xi )

\sqrt{} 
gW ( \.\=\rho 0, \.\=\rho 0)

\leq 
\sqrt{} 
\delta 0W (\rho \theta t , \rho t).(5.17)

For the second term in (5.16), we write it as
(5.18)

gW (gradW\scrH (\=\rho 1), \.\=\rho 1) - gW (gradW\scrH (\=\rho 0), \.\=\rho 0) =

\int 1

0

d

d\tau 
gW (gradW\scrH (\=\rho \tau ), \.\=\rho \tau ) d\tau .

By Lemma 5.8, we have

(5.19) gW (gradW\scrH (\=\rho 1), \.\=\rho 1) - gW (gradW\scrH (\=\rho 0), \.\=\rho 0) \geq \lambda W 2
2 (\rho \theta t , \rho t).

Combining inequalities (5.17), (5.19), and (5.16), we get

1

2

d

dt
W 2

2 (\rho \theta t , \rho t) \leq  - \lambda W 2
2 (\rho \theta t , \rho t) +

\sqrt{} 
\delta 0 W2(\rho \theta t , \rho t).

This is

d

dt
W2(\rho \theta t , \rho t) \leq  - \lambda W2(\rho \theta t , \rho t) +

\sqrt{} 
\delta 0.

When \lambda \not = 0, Gronwall's inequality gives

W2(\rho \theta t , \rho t) \leq 
\surd 
\delta 0
\lambda 

(1 - e - \lambda t) + e - \lambda tW2(\rho \theta 0 , \rho 0).

When \lambda = 0, the inequality is d
dtW2(\rho \theta t , \rho t) \leq 

\surd 
\delta 0, and direct integration yields

W2(\rho \theta t , \rho t) \leq 
\sqrt{} 
\delta 0t+W2(\rho \theta 0 , \rho 0) .

When the potential V is strictly convex, i.e., \lambda > 0, (5.13) in Theorem 5.6 provides
a nice estimation of the error term W2(\rho \theta t , \rho t) at any time t that is always upper

bounded by max\{ 
\surd 
\delta 0
\lambda ,W2(\rho \theta 0 , \rho 0)\} .
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1418 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

In the case that the potential V is not strictly convex, i.e., \lambda could be 0 or negative,
the right-hand side in (5.13) may increase to infinity when time t \rightarrow \infty . However,
(5.5) and (5.12) reveal that both \rho \theta t and \rho t stay in a small neighborhood of the Gibbs
\rho \ast when t is large. When taking this into account, we are able to show that the error
term W2(\rho \theta t , \rho t) doesn't get arbitrarily large. In the following theorem, we provide a
uniform bound for the error depending on t.

Theorem 5.9. Suppose \{ \rho t\} t\geq 0 solves (2.2) and \{ \rho \theta t\} t\geq 0 solves (3.18), and the
Hessian of the potential V \in \scrV is bounded from below by \lambda , i.e., \nabla 2V \succeq \lambda I. Then
(5.20)

W2(\rho \theta t , \rho t) \leq min

\left\{ 
 
 \Omega \lambda (t),

\sqrt{} 
2\delta 0

\~\lambda 2DD
2
+

\left( 
 
\sqrt{}    
\bigm| \bigm| \bigm| \bigm| \bigm| 2K1  - 

2\delta 0
\~\lambda 2DD

2

\bigm| \bigm| \bigm| \bigm| \bigm| +
\sqrt{} 

2K2

\~\lambda D

\right) 
 e - 

\~\lambda D
2 Dt

\right\} 
 
 ,

where the function \Omega \lambda (t) is defined in (5.13), E0 = W2(\rho \theta 0 , \rho 0), K1 = \scrD KL(\rho \theta 0\| \rho \ast ),
and K2 = \scrD KL(\rho 0\| \rho \ast ).

Lemma 5.10 (Talagrand inequality [47, 68]). If the Gibbs distribution \rho \ast satisfies
the logarithmic Sobolev inequality (5.6) with constant \~\lambda > 0, \rho \ast also satisfies the
Talagrand inequality:

(5.21)

\sqrt{} 
2
\scrD KL(\rho \| \rho \ast )

\~\lambda 
\geq W2(\rho , \rho \ast ) for any \rho \in \scrP .

Proof of Theorem 5.9. The first term is already provided in Theorem 5.6, and
the second term is just a quick result of Theorem 5.1 and the Talagrand inequality:
for t fixed, (5.5) together with the Talagrand inequality (5.21) gives

W2(\rho \theta t , \rho \ast ) \leq 
\sqrt{} 
2
\scrD KL(\rho \theta t\| \rho \ast )

\~\lambda D
\leq 
\sqrt{} 

2\delta 0
\~\lambda 2DD

2
(1 - e - \~\lambda DDt) + 2K1e - 

\~\lambda DDt

\leq 
\sqrt{} 

2\delta 0
\~\lambda 2DD

2
+

\sqrt{}    
\bigm| \bigm| \bigm| \bigm| \bigm| 2K1  - 

2\delta 0
\~\lambda 2DD

2

\bigm| \bigm| \bigm| \bigm| \bigm| e
 - \~\lambda D

2 Dt.

Similarly, (5.12) and (5.21) give

W2(\rho t, \rho \ast ) \leq 
\sqrt{} 
2
\scrD KL(\rho t\| \rho \ast )

\~\lambda D
\leq 
\sqrt{} 

2K2

\~\lambda D
e - 

\~\lambda D
2 Dt.

Applying the triangle inequality of Wasserstein distance W2(\rho \theta t , \rho t) \leq W2(\rho \theta t , \rho \ast ) +
W2(\rho t, \rho \ast ), we get (5.20).

Based on Theorem 5.9, we can obtain a uniform a priori error estimate.

Theorem 5.11 (main theorem on a priori error analysis of the parametric Fokker--
Planck equation). Assume E0 = W2(\rho \theta 0 , \rho 0) and \delta 0 defined in (5.1) are sufficiently
small in the sense that

(5.22) E0 < A
\sqrt{} 
\delta 0 +B,

\sqrt{} 
\delta 0 + E0 \leq Be - \mu D(A+1).

Then the approximation error W2(\rho \theta t , \rho t) at any time t > 0 can be uniformly bounded
by E0 and \delta 0:

\bullet When \lambda > 0, W2(\rho \theta t , \rho t) \leq max\{ 
\surd 
\delta 0/\lambda ,E0\} \sim O(

\surd 
\delta 0 + E0).
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t

E(t)

 - 1
| \lambda | 

\surd 
\delta 0 +

\Bigl( 
E0 +

\surd 
\delta 0

| \lambda | 

\Bigr) 
e| \lambda | t

A
\surd 
\delta 0 +Be - \mu Dt

t0

Fig. 4. An illustrative diagram for the proof of Theorem 5.11.

\bullet When \lambda = 0, W2(\rho \theta t , \rho t) \leq 
\surd 
\delta 0
\mu D

log B\surd 
\delta 0+E0

+ E0 \sim O(
\surd 
\delta 0 log

1\surd 
\delta 0+E0

+ E0).

\bullet When \lambda < 0,W2(\rho \theta t , \rho t) \leq A
\surd 
\delta 0+B

| \lambda | 
| \lambda | +\mu D

\bigl( 
E0 +

\surd 
\delta 0/| \lambda | 

\bigr) \mu D
| \lambda | +\mu D \sim O((E0+

\surd 
\delta 0)

\~\lambda DD

2| \lambda | +\~\lambda DD ).
Here A,B, \mu D are O(1) constants depending on V,D, \rho 0, \theta 0. Their values are given
in (5.24).

Proof of Theorem 5.11. When \lambda > 0, by (5.20), we have E(t) \leq 
\surd 
\delta 0
\lambda +

\bigl( 
E0  - \surd 

\delta 0
\lambda 

\bigr) 
e - \lambda t, and the right-hand side can be bounded by max\{ E0,

\surd 
\delta 0
\lambda \} .

When \lambda < 0, we denote the right-hand side of (5.20) by

(5.23) E(t) = min

\biggl\{ 
 - 1

| \lambda | 
\sqrt{} 
\delta 0 +

\biggl( 
E0 +

\surd 
\delta 0

| \lambda | 

\biggr) 
e| \lambda | t, A

\sqrt{} 
\delta 0 +Be - \mu Dt

\biggr\} 
,

where

(5.24) A =

\surd 
2

\~\lambda DD
, B =

\sqrt{}    
\bigm| \bigm| \bigm| \bigm| \bigm| 2K1  - 

2\delta 0
\~\lambda 2DD

2

\bigm| \bigm| \bigm| \bigm| \bigm| +
\sqrt{} 

2K2

\~\lambda D
, and \mu D =

\~\lambda DD

2

are all positive numbers. The first term in (5.23) is increasing as a function of time
t, while the second term is decreasing; combining E0 < A

\surd 
\delta 0 + B, we know t0 =

argmaxt\geq 0E(t) is unique and satisfies

(5.25)  - 1

| \lambda | 
\sqrt{} 
\delta 0 +

\biggl( 
E0 +

\surd 
\delta 0

| \lambda | 

\biggr) 
e| \lambda | t0 = A

\sqrt{} 
\delta 0 +Be - \mu Dt0 ,

as indicated in Figure 4.

Since A > 0, (5.25) leads to
\bigl( 
E0 +

\surd 
\delta 0

| \lambda | 
\bigr) 
e| \lambda | t0 > Be - \mu Dt0 , and thus

(5.26) t0 >
logB  - log

\Bigl( 
E0 +

\surd 
\delta 0

| \lambda | 

\Bigr) 

| \lambda | + \mu D
.

Using (5.26), we show that
(5.27)

max
t\geq 0

E(t) = E(t0) = A
\sqrt{} 
\delta 0 +B e - \mu Dt0 < A

\sqrt{} 
\delta 0 +B

| \lambda | 
| \lambda | +\mu D

\biggl( 
E0 +

\surd 
\delta 0

| \lambda | 

\biggr) \mu D
| \lambda | +\mu D

.
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1420 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

As a result, W2(\rho \theta t , \rho t) can be uniformly bounded by the right-hand side of (5.27).
Since A,B are O(1) coefficients, this uniform bound is dominated by the term

O
\bigl( \bigl( 
E0 +

\surd 
\delta 0

| \lambda | 
\bigr) \mu D

| \lambda | +\mu D

\bigr) 
= O((E0 +

\surd 
\delta 0)

\~\lambda DD

2| \lambda | +\~\lambda DD ).

At last, when \lambda = 0, by (5.20)

E(t) = min
\Bigl\{ \sqrt{} 

\delta 0t+ E0, A
\sqrt{} 
\delta 0 +Be - \mu Dt

\Bigr\} 
.

Let us denote f(t) = A
\surd 
\delta 0+Be

 - \mu Dt - 
\surd 
\delta 0t - E0. Similar to the analysis for the case

\lambda < 0, we denote t0 = argmaxt\geq 0E(t), and then t0 is unique and solves f(t0) = 0.
Since f(t) is decreasing with f(A+ 1) > 0, t0 > A+ 1. Then we have

max
t\geq 0

E(t) = E(t0) = A
\sqrt{} 
\delta 0 +Be - \mu Dt0 =

\sqrt{} 
\delta 0t0 + E0 >

\sqrt{} 
\delta 0(A+ 1) + E0.

This leads to Be - \mu Dt0 >
\surd 
\delta 0 + E0, i.e., t0 <

1
\mu D

log B\surd 
\delta 0+E0

. Thus we have

max
t\geq 0

E(t) = E(t0) =
\sqrt{} 
\delta 0t0 + E0 <

\surd 
\delta 0
\mu D

log
B\surd 

\delta 0 + E0

+ E0.

Therefore W2(\rho \theta t , \rho t) can be uniformly bounded by the term
\surd 
\delta 0
\mu D

log B\surd 
\delta 0+E0

+ E0 \sim 
O(

\surd 
\delta 0 log

1\surd 
\delta 0+E0

+ E0).

Remark 5.12. In the case that V \in \scrV is not convex, we can decompose V by
V = U + \phi with \nabla 2U \succeq KI (K > 0) and \nabla 2\phi \succeq K\phi I. We can still assume
\nabla 2V \succeq \lambda I, but \lambda may be negative. One can verify that K\phi < 0 and | K\phi |  - K \geq | \lambda | .
On the other hand, one can compute \~\lambda D = K

D e
 - osc(\phi )

D . Combining them, we provide
a lower bound for \alpha :

\alpha \geq \gamma (D,U, \phi ) =
1

1 + 2
\Bigl( 

| K\phi | 
K  - 1

\Bigr) 
e

osc(\phi )
D

.

One can verify that increasing the diffusion coefficient D or convexityK, or decreasing
the oscillation osc(\phi ) and convexity K\phi , can improve the lower bound \gamma (D,U, \phi ) for
the order \alpha .

In a similar way, we can establish the corresponding a posteriori error estimate
for W2(\rho \theta t , \rho t).

Theorem 5.13 (a posteriori error analysis of the parametric Fokker--Planck equa-
tion). Suppose E0 = W2(\rho \theta 0 , \rho 0) and \delta 1 defined in (5.4) satisfy the condition (5.22)
with \delta 0 replaced by \delta 1. Then

1. when \lambda \geq 0, W2(\rho \theta t , \rho t) can be uniformly bounded by O(E0 +
\surd 
\delta 1);

2. when \lambda = 0, W2(\rho \theta t , \rho t) can be uniformly bounded by O(
\surd 
\delta 1 log

1\surd 
\delta 1+E0

+E0);

3. when \lambda < 0, W2(\rho \theta t , \rho t) can be uniformly bounded by O((E0+
\surd 
\delta 1)

\~\lambda DD

2| \lambda | +\~\lambda DD ).

5.3.2. Wasserstein error for the time discrete schemes. To solve (3.18)
numerically, we need time discrete schemes, such as the one proposed in (4.8). In
this subsection, we present the error estimate in Wasserstein distance for our scheme.
We begin our analysis by focusing on the forward Euler scheme, meaning that we
apply the forward Euler scheme to solve (3.18) and compute \theta k at each time step.
We denote \rho \theta k = T\theta k \sharp p. We estimate the W2-error between \rho \theta k and the real solution
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\scrP (\BbbR d)

\rho 0
\rho \theta 0

\rho \theta k

\rho tk

\rho \theta k - 1

\rho tk - 1

\rho  \star tk

\~\rho tk

Fig. 5. Trajectory of \{ \rho \theta k\} k=0,...,N is our numerical solution; trajectory of \{ \rho t\} t\geq 0 is the real
solution of the Fokker--Planck equation; \{ \~\rho t\} t\geq tk - 1

solves (5.30); \{ \rho  \star t \} t\geq tk - 1
solves (5.31).

\rho tk . Then we analyze the W2 distance between the solutions obtained by the forward
Euler scheme and our scheme (4.8), respectively, which in turn gives us the W2 error
estimate for our scheme.

Theorem 5.14 (a priori error analysis of forward Euler scheme). Let \theta k (k =
0, 1, . . . , N) be the solution of forward Euler scheme applied to (3.18) at time tk = kh
on [0, T ] with time step size h = T

N , \rho \theta k = T\theta k \sharp p, and \{ \rho t\} t\geq 0 solves the Fokker--Planck

equation (2.2) exactly. Assume that the Hessian of the potential function V \in \scrC 2(\BbbR d)
can be bounded from above and below, i.e., \lambda I \preceq \nabla 2V \preceq \Lambda I. Then
(5.28)

W2(\rho \theta k , \rho tk) \leq (
\sqrt{} 
\delta 0h+Ch

2)
1 - e - \lambda tk
1 - e - \lambda h +e - \lambda tkW2(\rho \theta 0 , \rho 0) for any tk = kh, 0 \leq k \leq N,

where C is a constant whose direct formula is provided in (5.45).

In order to estimateW2(\rho \theta k , \rho tk), we use the triangle inequality of theW2 distance
[68] to separate it into three parts:

(5.29) W2(\rho \theta k , \rho tk) \leq W2(\rho \theta k , \~\rho 
 \star 
tk
) +W2(\rho 

 \star 
tk
, \~\rho tk) +W2(\~\rho tk , \rho tk).

Here \{ \~\rho t\} tk - 1\leq t\leq tk satisfies

(5.30)
\partial \~\rho t
\partial t

= \nabla \cdot (\~\rho t\nabla V ) +D\Delta \~\rho t , \~\rho tk - 1
= \rho \theta k - 1

,

and \{ \rho  \star t \} t\geq tk - 1
satisfies

(5.31)
\partial \rho  \star t
\partial t

= \nabla \cdot (\rho  \star t\nabla (V +D log \rho \theta k - 1
)) , \rho  \star tk - 1

= \rho \theta k - 1
.

Figure 5 shows the relations of different items used in our proof. We present three
lemmas that estimate three terms in (5.29), respectively.
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1422 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

original position of a particle x

Ttk - 1\rightarrow tk(x)
where our para-
metric Fokker
Planck equation
sends x to

\~Ttk - 1\rightarrow tk(x)

\~Gtk - 1\rightarrow tk(x)

Gtk - 1\rightarrow tk(x)

where the actual
Vlasov dynamic
sends x to

Expectation of this
distance w.r.t. \rho \theta k - 1

gives upper bound of
W2(\rho \theta k , \rho 

 \star 
tk
)

Fig. 6. Illustration of proof strategy for Lemma 5.15.

Lemma 5.15. W2(\rho \theta k , \rho 
 \star 
tk
) in (5.29) can be upper bounded by

\surd 
\delta 0h+O(h2).

An explicit formula for the coefficient of h2 is included in the following proof.

Proof. We establish the desired estimation by introducing several different push-
forward maps as shown in Figure 6 and then applying the triangle inequality.

(a) We know \rho \theta k - 1
= T\theta k - 1 \sharp 

p and \rho \theta k = T\theta k \sharp p, and let us denote Ttk - 1\rightarrow tk =

T\theta k \circ T - 1
\theta k - 1

. Then \rho \theta k = Ttk - 1\rightarrow tk \sharp 
\rho \theta k - 1

.

(b) Let \xi k - 1 = \.\theta k - 1 =  - G(\theta k - 1)
 - 1\nabla \theta H(\theta k - 1), and by convention we denote \Psi 

as a solution of (3.6). We consider the map \~Ttk - 1\rightarrow tk(\cdot ) = Id+h\nabla \Psi (\cdot )T\xi k - 1.
(c) We denote \zeta \theta (\cdot ) = V (\cdot ) + D log \rho \theta (\cdot ). The particle version (recall (2.3)) of

(5.31) is
(5.32)

\.zt =  - \nabla \zeta \theta k - 1
(zt), 0 \leq t \leq h, with initial condition z0 = x \sim \rho \theta k - 1

.

We denote the solution map of (5.32) by Gtk - 1\rightarrow tk(x) = ztk . Then \rho  \star tk =
Gtk - 1\rightarrow tk \sharp 

\rho \theta k - 1
.

(d) The map Gtk - 1\rightarrow tk is obtained by solving an ODE in order to compare the
difference with Ttk - 1\rightarrow tk . We consider the ODE with fixed initial vector field:

(5.33) \.\~zt =  - \nabla \zeta \theta k - 1
(x) 0 \leq t \leq h \~z0 = x \sim \rho \theta k - 1

.

This ODE will induce the solution map \~Gtk - 1\rightarrow tk(\cdot ) = Id - h\nabla \zeta \theta k - 1
(\cdot ).

With the maps defined in (a), (b), (c), (d), and using the triangle inequality of W2

distance, we have

W2(\rho \theta k , \~\rho 
 \star 
tk
)=W2(Ttk - 1\rightarrow tk\sharp \rho \theta k - 1

, Gtk - 1\rightarrow tk\sharp \rho \theta k - 1
)

\leq W2(Ttk - 1\rightarrow tk\sharp \rho \theta k - 1
, \~Ttk - 1\rightarrow tk\sharp \rho \theta k - 1

)\underbrace{}  \underbrace{}  
(A)

+W2( \~Ttk - 1\rightarrow tk\sharp \rho \theta k - 1
, \~Gtk - 1\rightarrow tk\sharp \rho \theta k - 1

)\underbrace{}  \underbrace{}  
(B)

+W2( \~Gtk - 1\rightarrow tk\sharp \rho \theta k - 1
, Gtk - 1\rightarrow tk\sharp \rho \theta k - 1

)\underbrace{}  \underbrace{}  
(C)

.

In the rest of the proof, we give upper bounds for distances (A), (B), and (C), respec-
tively.
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(A) Let us define \xi (\theta ) =  - G(\theta ) - 1\nabla H(\theta ). Now we set \theta (\tau ) = \theta k - 1 + \tau 
h (\theta k  - 

\theta k - 1) = \theta k - 1 + \tau \xi (\theta k - 1). For any x, consider x\tau = T\theta (\tau )(T
 - 1
\theta k - 1

(x)) with

0 \leq \tau \leq h; then \{ x\tau \} 0\leq \tau \leq h satisfies

(5.34) \.x\tau = \partial \theta T\theta (\tau )(T
 - 1
\theta (\tau )(x\tau ))\xi (\theta k - 1), 0 \leq \tau \leq h.

If x0 \sim \rho \theta k - 1
in (5.34), it is clear that xh \sim Ttk - 1\rightarrow tk \sharp 

\rho \theta k - 1
. Furthermore, we

denote the distribution of x\tau as \rho \tau and \{ \psi \tau \} satisfying
(5.35)

 - \nabla \cdot (\rho \tau (x)\partial \theta T\theta (\tau )(T - 1
\theta (\tau )(x))\xi k - 1) =  - \nabla \cdot (\rho \tau (x)\nabla \psi \tau (x)), 0 \leq \tau \leq h.

If we consider

\.y\tau = \nabla \psi \tau (y\tau ), 0 \leq \tau \leq h, with y0 \sim \rho \theta k - 1
,

and denote \varrho \tau as the distribution of y\tau , by the continuity equation and (5.35),
we know \rho \tau = \varrho \tau for 0 \leq \tau \leq h, and thus yh \sim Ttk - 1\rightarrow tk \sharp 

\rho \theta k - 1
. On the other

hand, when \tau = 0, (5.35) shows \nabla \psi 0(x) = \nabla \Psi (x)T\xi k - 1. Combining them,
we bound term (A) as

W 2
2 (Ttk - 1\rightarrow tk\sharp \rho \theta k - 1

, \~Ttk - 1\rightarrow tk\sharp \rho \theta k - 1
)

\leq \BbbE y0\sim \rho \theta k - 1
| yh  - (y0 + h\nabla \psi 0(y0))| 2 = \BbbE y0\sim \rho \theta k - 1

\bigm| \bigm| \bigm| 
\int h

0

(\nabla \psi \tau (y\tau ) - \nabla \psi 0(y0)) d\tau 
\bigm| \bigm| \bigm| 
2

= \BbbE y0

\bigm| \bigm| \bigm| \bigm| \bigm| 

\int h

0

\int \tau 

0

d

ds
(\nabla \psi s(ys)) ds d\tau 

\bigm| \bigm| \bigm| \bigm| \bigm| 

2

= \BbbE y0

\bigm| \bigm| \bigm| \bigm| \bigm| 

\int h

0

\int h

s

d

ds
(\nabla \psi s(ys)) d\tau ds

\bigm| \bigm| \bigm| \bigm| \bigm| 

2

= \BbbE y0

\bigm| \bigm| \bigm| \bigm| \bigm| 

\int h

0

(h - s)
d

ds
(\nabla \psi s(ys)) ds

\bigm| \bigm| \bigm| \bigm| \bigm| 

2

\leq \BbbE y0
\int h

0

(h - s)2 ds

\int h

0

\bigm| \bigm| \bigm| \bigm| 
d

ds
(\nabla \psi s(ys))

\bigm| \bigm| \bigm| \bigm| 
2

ds

=
h3

3

\int h

0

\BbbE y0

\bigm| \bigm| \bigm| \bigm| 
d

ds
(\nabla \psi s(ys))

\bigm| \bigm| \bigm| \bigm| 
2

ds

=
h4

3

\Biggl( 
1

h

\int h

0

\BbbE ys

\bigm| \bigm| \bigm| \bigm| 
\partial \nabla \psi s(ys)

\partial t
+\nabla 2\psi s(ys)\nabla \psi s(ys)

\bigm| \bigm| \bigm| \bigm| 
2

ds

\Biggr) 
.

Notice that ys follows the distribution \rho s = (T\theta k - 1+s\xi (\theta k - 1) \circ T - 1
\theta k - 1

)\sharp \rho \theta k - 1
=

T\theta k - 1+s\xi (\theta k - 1)\sharp p.
If we define

\frakM (\theta , s) =

\int \bigm| \bigm| \bigm| \bigm| 
\partial 

\partial t
\nabla \psi s(T\theta (s)(z)) +\nabla 2\psi s(T\theta (s)(z))\nabla \psi s(T\theta (s)(z))

\bigm| \bigm| \bigm| \bigm| 
2

p(z) dz

with \theta (s) = \theta + s\xi (\theta ),

and \psi s solving  - \nabla \cdot (\rho s\nabla \psi s) =  - \nabla \cdot (\rho s \partial \theta T\theta (s) \circ T - 1
\theta (s) \xi (\theta )),

where \rho s = T\theta +s\xi (\theta )\sharp p,

(5.36)

we are able to derive

(5.37) W 2
2 (Ttk - 1\rightarrow tk\sharp \rho \theta k - 1

, \~Ttk - 1\rightarrow tk\sharp \rho \theta k - 1
) \leq 1

3
sup

0\leq s\leq h
\frakM (\theta k - 1, s)h

4.
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1424 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

(B) We have

W 2
2 ( \~Ttk - 1\rightarrow tk\sharp \rho \theta k - 1

, \~Gtk - 1\rightarrow tk\sharp \rho \theta k - 1
)

\leq 
\int 

| \~Ttk - 1\rightarrow tk(x) - \~Gtk - 1\rightarrow tk(x)| 2\rho \theta k - 1
(x) dx

= h2
\biggl( \int 

| \nabla \Psi (x)T\xi (\theta k - 1) - ( - \nabla \zeta \theta k - 1
(x))| 2\rho \theta k - 1

(x) dx

\biggr) 

= h2
\biggl( \int 

| \nabla \Psi (T\theta k - 1
(x))T\xi (\theta k - 1) - ( - \nabla (V +D log \rho \theta k - 1

) \circ T\theta k - 1
(x))| 2 dp(x)

\biggr) 

\leq \delta 0 h
2.

The last inequality is due to Theorem 3.8 and definition (5.1).

(C) Recalling that \{ zt\} and \{ \~zt\} solve (5.32) and (5.33) with initial condition
z0 = \~z0 = x, respectively, similar to the analysis in (A), we can estimate term
(C) as

W 2
2 ( \~Gtk - 1\rightarrow tk\sharp \rho \theta k - 1

, Gtk - 1\rightarrow tk\sharp \rho \theta k - 1
)

\leq \BbbE x\sim \rho \theta k - 1
| zh  - \~zh| 2 = \BbbE x\sim \rho \theta k - 1

\bigm| \bigm| \bigm| \bigm| \bigm| 

\int h

0

\nabla \zeta k - 1(x) - \nabla \zeta k - 1(z\tau ) d\tau 

\bigm| \bigm| \bigm| \bigm| \bigm| 

2

= \BbbE x

\bigm| \bigm| \bigm| \bigm| \bigm| 

\int h

0

\int \tau 

0

d

ds
\nabla \zeta \theta k - 1

(zs) ds d\tau 

\bigm| \bigm| \bigm| \bigm| \bigm| 

2

= \BbbE x

\bigm| \bigm| \bigm| \bigm| \bigm| 

\int h

0

(h - s)
d

ds
\nabla \zeta \theta k - 1

(zs) ds

\bigm| \bigm| \bigm| \bigm| \bigm| 

2

\leq \BbbE x
h3

3

\int h

0

\bigm| \bigm| \bigm| \bigm| 
d

ds
\nabla \zeta \theta k - 1

(zs)

\bigm| \bigm| \bigm| \bigm| 
2

ds =
h4

3

\Biggl( 
1

h

\int h

0

\BbbE zs
\bigm| \bigm| \nabla 2\zeta \theta k - 1

(zs)\zeta \theta k - 1
(zs)

\bigm| \bigm| 2 ds

\Biggr) 
.

We define

\frakN (\theta , s) = \BbbE zs
\bigm| \bigm| \nabla 2\zeta \theta (zs)\zeta \theta (zs)

\bigm| \bigm| 2 , with \zeta \theta (\cdot ) = V (\cdot ) +D log \rho \theta (\cdot ),
\.zt =  - \nabla \zeta \theta (zt), z0 \sim \rho \theta .

Similarly to (A), we have

W 2
2 (

\~Gtk - 1\rightarrow tk\sharp \rho \theta k - 1
, Gtk - 1\rightarrow tk\sharp \rho \theta k - 1

) \leq 1

3
sup

0\leq s\leq h
\frakN (\theta k - 1, h)h

4.

Combining the estimates for terms (A), (B), and (C) and defining

(5.38) M(\theta , h) = sup
0\leq s\leq h

\frakM (\theta k - 1, s), N(\theta , h) = sup
0\leq s\leq h

\frakN (\theta k - 1, s),

we obtain

W2(\rho \theta k , \~\rho 
 \star 
tk
) \leq 

\sqrt{} 
\delta 0h+

M(\theta k - 1, h) +N(\theta k - 1, h)\surd 
3

h2.

Lemma 5.16. The second term in (5.29) can be upper bounded by O(h2).

Proof. Recall that \~\rho t is defined by (5.30) and \rho \ast t is defined by (5.31). We can
rewrite (5.31) as

\partial \rho  \star t
\partial t

= \nabla \cdot (\rho  \star t (\nabla V +D\nabla log \rho \theta k - 1
 - D\nabla log \rho  \star t )) +D\Delta \rho  \star t , tk - 1 \leq t \leq tk.
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We consider the following SDEs sharing the same trajectory of Brownian motion
\{ \bfitB \tau \} 0\leq \tau \leq h and initial condition:

dx\tau =  - \nabla V (x\tau )d\tau +
\surd 
2D d\bfitB \tau ,

(5.39)

dx \star \tau =  - \nabla V (x \star \tau )d\tau + (D\nabla log \rho  \star tk - 1+\tau 
(x \star \tau ) - D\nabla log \rho \theta k - 1

(x \star \tau ))d\tau +
\surd 
2D d\bfitB \tau ,

(5.40)

with initial condition: x0 = x \star 0 \sim \rho \theta k - 1
and 0 \leq \tau \leq h.

Subtracting (5.39) from (5.40), we get

x \star \tau  - x\tau =

\int \tau 

0

\nabla V (xs) - \nabla V (x \star s) + \vec{}r(x \star s, s) ds,

in which we denote \vec{}r(x, \tau ) = D\nabla log \rho  \star tk - 1+\tau 
(x)  - D\nabla log \rho \theta k - 1

(x) for convenience.
Hence,

\BbbE | x \star \tau  - x\tau | 2 = \BbbE 
\bigm| \bigm| \bigm| \bigm| 
\int \tau 

0

\nabla V (xs) - \nabla V (x \star s) + \vec{}r(x \star s, s) ds

\bigm| \bigm| \bigm| \bigm| 
2

\leq 2 \BbbE 
\bigm| \bigm| \bigm| \bigm| 
\int \tau 

0

\nabla V (xs) - \nabla V (x \star s) ds

\bigm| \bigm| \bigm| \bigm| 
2

+ 2 \BbbE 
\bigm| \bigm| \bigm| \bigm| 
\int \tau 

0

\vec{}r(x \star s, s) ds

\bigm| \bigm| \bigm| \bigm| 
2

\leq 2 \BbbE 
\biggl[ 
\tau 

\int \tau 

0

| \nabla V (xs) - \nabla V (x \star s)| 2 ds
\biggr] 
+ 2 \BbbE 

\biggl[ 
\tau 

\int \tau 

0

| \vec{}r(x \star s, s)| 2 ds
\biggr] 

= 2\tau 

\biggl( \int \tau 

0

\BbbE | \nabla V (xs) - \nabla V (x \star s)| 2 + \BbbE | \vec{}r(x \star s, s)| 2 ds
\biggr) 
.

Since the Hessian of V is bounded from above by \Lambda , | \nabla V (x) - \nabla V (y)| \leq \Lambda | x - y| for
any x, y \in \BbbR d, we have the inequality

(5.41) \BbbE | x \star \tau  - x\tau | 2 \leq 2\tau \Lambda 2

\int \tau 

0

\BbbE | x \star s  - xs| 2 ds+ 2\tau 

\int \tau 

0

\BbbE | \vec{}r(x \star s, s)| 2 ds.

If we define U\tau =
\int \tau 
0
\BbbE | x \star s  - xs| 2 ds and R\tau =

\int \tau 
0
\BbbE | \vec{}r(x \star s, s)| 2 ds, (5.41) becomes

U \prime 
\tau \leq 2\Lambda 2\tau U\tau + 2\tau R\tau .

By integrating this inequality, we have U\tau \leq 
\int \tau 
0
2e\Lambda (\tau 2 - s2)sRs ds and U \prime 

\tau \leq 
4\Lambda 2\tau 

\int \tau 
0
e\Lambda (\tau 2 - s2)sRsds+ 2\tau R\tau . Therefore

W2(\rho 
 \star 
tk
, \~\rho tk) \leq 

\sqrt{} 
\BbbE | x \star h  - xh| 2 =

\sqrt{} 
U \prime 
h \leq 

\sqrt{} 
4\Lambda 2h

\int h

0

e\Lambda (h2 - s2)sRs ds+ 2hRh.

Since R\tau is increasing with respect to \tau , we are able to estimate
(5.42)

W2(\rho 
 \star 
tk
, \~\rho tk) \leq 

\sqrt{} 
4\Lambda 2h2

\int h

0

e\Lambda (h2 - s2)sds+ 2h
\sqrt{} 
Rh =

\sqrt{} 
2\Lambda (e\Lambda h2  - 1)h+ 2h

\sqrt{} 
Rh.
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1426 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

Next we estimate Rh. Recalling \rho 
\ast 
tk - 1

= \rho \theta k - 1
as in (5.31), we have

Rh =

\int h

0

\BbbE x \star 
s
| D log \rho  \star tk - 1+s

(x \star s) - D log \rho  \star tk - 1
(x \star s)| 2 ds

= D2

\int h

0

\BbbE x \star 
s

\bigm| \bigm| \bigm| \bigm| 
\int s

0

\partial 

\partial t
\nabla log \rho  \star tk - 1+t

(x \star s) dt

\bigm| \bigm| \bigm| \bigm| 
2

ds

\leq D2

\int h

0

\BbbE x \star 
s

\Biggl[ 
s

\int s

0

\bigm| \bigm| \bigm| \bigm| 
\partial 

\partial t
\nabla log \rho  \star tk - 1+t

(x \star s)

\bigm| \bigm| \bigm| \bigm| 
2

dt

\Biggr] 
ds

= D2

\int h

0

\int s

0

s

\int \bigm| \bigm| \bigm| \bigm| 
\partial 

\partial t
\nabla log \rho  \star tk - 1+t

\bigm| \bigm| \bigm| \bigm| 
2

\rho  \star tk - 1+s
dx dt ds.

By (5.31), one can further compute \partial 
\partial t log \rho 

 \star 
tk - 1+t

=  - \nabla log \rho  \star tk - 1+t
\cdot \nabla \zeta \theta k - 1

 - \Delta \zeta \theta k - 1
.

Let us define

\frakL (\theta , t, s) =

\int 
| \nabla (\nabla log \rho t \cdot \nabla \zeta \theta +\Delta \zeta \theta )| 2\rho s dx with \zeta \theta = V +D log \rho \theta 

and
\partial \rho s
\partial s

+\nabla \cdot (\rho s\nabla \zeta \theta ) = 0, \rho 0 = \rho \theta .

Then we have the estimation

Rh \leq D2

\int h

0

\int s

0

s \cdot 
\biggl( 

sup
0\leq t\leq s\leq h

\frakL (\theta k - 1, t, s)

\biggr) 
dt ds =

D2

3
sup

0\leq t\leq s\leq h
\frakL (\theta k - 1, t, s) h

3.

Let us also define

(5.43) L(\theta , h) =

\biggl( 
sup

0\leq t\leq s\leq h
\frakL (\theta , t, s)

\biggr) 1
2

.

Thus (5.42) becomes W2(\rho 
 \star 
tk
, \~\rho tk) \leq 

\sqrt{} 
2D2

3 (\Lambda (e\Lambda h2  - 1) + 2)L(\theta k - 1, h) h
2. When the

step size h is small enough, we have e\Lambda h
2

< 2. Let us denoteK(D,\Lambda ) =
\sqrt{} 

2D2

3 (\Lambda + 2).

Thus we have W2(\rho 
 \star 
tk
, \~\rho tk) \leq K(D,\Lambda )L(\theta k - 1, h) h

2.

Remark 5.17. Analyzing the discrepancy of stochastic particles under different
movements provides a natural upper bound for the W2 distance. Both Lemma 5.15
and Lemma 5.16 are derived by making use of the particle version of their correspond-
ing density evolution. Such proving strategy was motivated from section 3.3.

Lemma 5.18. The third term in (5.29) satisfiesW2(\rho tk , \~\rho tk) \leq e - \lambda hW2(\rho tk - 1
, \rho \theta k - 1

).
Here we recall that \lambda satisfies \nabla 2V \succeq \lambda I.

This lemma is a direct corollary of the following theorem.

Theorem 5.19. Suppose the potential V \in C2(\BbbR d) satisfying \nabla 2V \succeq \lambda I for a
finite real number \lambda , i.e., the matrix \nabla 2V (x)  - \lambda I, is semi--positive definite for any

x \in \BbbR d. Given \rho 1, \rho 2 \in \scrP , and denoting by \rho 
(1)
t and \rho 

(2)
t the solutions of the Fokker--

Planck equation with different initial distributions \rho 1 and \rho 2, respectively, i.e.,

\partial \rho 
(1)
t

\partial t
= \nabla \cdot (\rho (1)t \nabla V ) +D\Delta \rho 

(1)
t , \rho 

(1)
0 = \rho 1,

\partial \rho 
(2)
t

\partial t
= \nabla \cdot (\rho (2)t \nabla V ) +D\Delta \rho 

(2)
t , \rho 

(2)
0 = \rho 2,
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then

(5.44) W2(\rho 
(1)
t , \rho 

(2)
t ) \leq e - \lambda tW2(\rho 1, \rho 2).

This is a known stability result on Wasserstein gradient flows. One can find its
proof in [4] or [68]. With the results in Lemmas 5.15, 5.16, and 5.18, we are ready to
prove Theorem 5.14.

Proof of Theorem 5.14. For convenience, we write

Errk =W2(\rho \theta k , \rho tk), k = 0, 1, . . . , N.

Combining Lemmas 5.15, 5.16, and 5.18 and the triangle inequality (5.29), we obtain

Errk\leq 
\sqrt{} 
\delta 0 h+

\biggl( 
1\surd 
3
M(\theta k - 1, h)+

1\surd 
3
N(\theta k - 1, h)+K(D,\Lambda )L(\theta k - 1, h)

\biggr) 
h2+e - \lambda h Errk - 1.

Let us denote the constant C depending on initial parameter \theta 0, time step size h, and
time steps N :
(5.45)

C(\theta 0, h,N) = max
0\leq k\leq N - 1

\biggl\{ 
1\surd 
3
M(\theta k - 1, h) +

1\surd 
3
N(\theta k - 1, h) +K(D,\Lambda )L(\theta k - 1, h)

\biggr\} 
.

In the following discussion, we will denote C = C(\theta 0, h,N) for simplicity. By
(5.45), we have

(5.46) Errk \leq 
\sqrt{} 
\delta 0h+ Ch2 + e - \lambda hErrk - 1.

Multiplying e\lambda kh on both sides of (5.46), we get

(5.47) e\lambda khErrk \leq (
\sqrt{} 
\delta 0 h+ Ch2)e\lambda kh + e\lambda (k - 1)hErrk - 1.

For any n, 1 \leq n \leq N , summing (5.47) from 1 to n, we reach

e\lambda nhErrn \leq (
\sqrt{} 
\delta 0h+Ch2)

\Biggl( 
n\sum 

k=1

e\lambda kh

\Biggr) 
+Err0 = (

\sqrt{} 
\delta 0h+Ch2)

e\lambda (n+1)h  - e\lambda h

e\lambda h  - 1
+Err0.

Recalling that tn = nh for 1 \leq n \leq N , this leads to

Errn \leq (
\sqrt{} 
\delta 0h+ Ch2)

1 - e - \lambda tn

1 - e - \lambda h
+ e - \lambda tnErr0, n = 1, . . . , N.

Theorem 5.14 indicates that the errorW2(\rho \theta k , \rho tk) is upper bounded by O(
\surd 
\delta 0)+

O(Ch)+O(W2(\rho \theta 0 , \rho 0)). Here O(
\surd 
\delta 0) is the essential error term that originates from

the approximation mechanism of our parametric Fokker--Planck equation. The O(Ch)
error term is induced by the finite difference scheme, and the O(W2(\rho \theta 0 , \rho 0)) term is
the initial error.

It is worth mentioning that the error bound for the forward Euler scheme in
(5.28) matches the error bound for the continuous scheme (5.13) as we reduce the
effects introduced by finite difference. To be more precise, under the assumption
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1428 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

limh\rightarrow 0 C(\theta 0, h,N)h = 0, we have

lim
h\rightarrow 0

(
\sqrt{} 
\delta 0h+ Ch2)

1 - e - \lambda t

1 - e - \lambda h
+ e - \lambda tW2(\rho \theta 0 , \rho 0)

= lim
h\rightarrow 0

(
\sqrt{} 
\delta 0 + Ch)(1 - e - \lambda t)

h

1 - e - \lambda h
+ e - \lambda tW2(\rho \theta 0 , \rho 0)

=

\surd 
\delta 0
\lambda 

(1 - e - \lambda t) + e - \lambda tW2(\rho \theta 0 , \rho 0).

This indicates that error bounds (5.28) and (5.13) are compatible as h\rightarrow 0.

Remark 5.20 (O(h) error order). Under further assumptions that \Theta = \BbbR m, T\theta (x) \in 
C3(\Theta \times \BbbR d), and

(5.48) lim
\theta \rightarrow \infty 

H(\theta ) = +\infty ,

we can show that the finite difference error term O(Ch) is of order O(h). In fact,
the solution obtained from the forward Euler scheme is always restricted in a fixed
bounded region of \Theta . To be more precise, supposing the initial value is \theta 0, we consider
\Theta 0 = \{ \theta | H(\theta ) \leq H(\theta 0)\} . By (5.48), one can verify \Theta 0 is a bounded and closed set
and thus compact. We set l = max\theta \in \Theta 0

| G(\theta ) - 1\nabla \theta H(\theta )| . Then we consider a slightly
larger set \Theta l0 = \{ \theta | there exists \theta \prime \in \Theta 0, s.t. | \theta  - \theta \prime | \leq l\} . Notice that \Theta l0 is also
bounded. We define

\sigma Gmin = min
\theta \in \Theta l

0

\sigma min(G(\theta )), \sigma Hmax = max
\theta \in \Theta l

0

\sigma max(\nabla 2
\theta \theta H(\theta )).

Here \sigma max(A), \sigma min(A) denotes the maximum and the minimum singular values of

matrix A. We can show that for any time step size h < min\{ 2\sigma G
min

\sigma H
max

, 1\} , the numerical

solution \{ \theta k\} Nk=1 obtained by applying the forward Euler scheme to (3.18) is included
in \Theta 0. To prove this, we first show \theta 1 \in \Theta 0 and consider

H(\theta 1) = H(\theta 0  - hG(\theta 0)
 - 1\nabla \theta H(\theta 0)) = H(\theta 0) - h\xi TG(\theta 0)\xi +

h2

2
\xi T\nabla 2

\theta \theta H(\~\theta )\xi 

\leq H(\theta 0) - h\sigma Gmin| \xi | 2 +
h2

2
\sigma Hmax| \xi | 2 \leq H(\theta 0).

Here we denote \xi = G(\theta 0)
 - 1\nabla \theta H(\theta 0). The second equality is due to T\theta (x) \in C3(\Theta \times 

\BbbR d) and thus H(\cdot ) \in C2(\Theta ). We notice that \~\theta = \theta 0 + \tau (hG(\theta 0)
 - 1\nabla \theta H(\theta 0)) with

0 \leq \tau \leq 1 and thus \~\theta \in \Theta l0. Since H(\theta 1) \leq H(\theta 0), we know \theta 1 \in \Theta 0. Applying
a similar argument with \theta 0 being replaced by \theta 1, we can further prove \theta 2 \in \Theta 0.
By induction, we can prove \{ \theta k\} Nk=1 \subset \Theta 0. Since \frakM (\theta , s),\frakN (\theta , s),\frakL (\theta , s) depend
continuously on \theta , s, their supreme values on compact set \Theta 0 \times [0, 1] must be finite
so we know C(\theta 0, h,N) in (5.45) is upper bounded by a constant independent of h as
well as N (recall N = T

h ). Thus the error term O(Ch) is of O(h) order.

Similar to the discussion in previous sections, we can naturally extend Theorem
5.14 to an a posteriori estimate.

Theorem 5.21 (a posteriori error analysis of forward Euler scheme).

W2(\rho \theta k , \rho tk) \leq (
\sqrt{} 
\delta 1h+ Ch2)

1 - e - \lambda tk

1 - e - \lambda h
+ e - \lambda tkW2(\rho \theta 0 , \rho 0)

for any tk = kh, 0 \leq k \leq N.
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The explicit definition of the constant C is in (5.45).

Up to this point, we have mainly analyzed the error term for the forward Euler
scheme. In our numerical implementation, we adopt the scheme (4.8), which turns out
to be a semi-implicit scheme with O(h2) local error. In the following discussion, we
compare the difference between the numerical solutions of our semi-implicit scheme
and the forward Euler scheme.

Recall that the parametric Fokker--Planck equation (3.18) is an ODE: \.\theta =
 - G(\theta ) - 1\nabla \theta H(\theta ). We consider two numerical schemes:
(5.49)
\theta n+1 = \theta n  - hG(\theta n)

 - 1\nabla \theta H(\theta n), \theta 0 = \theta , n = 1, 2, . . . , N (forward Euler scheme),

(5.50)
\^\theta n+1 = \^\theta n - hG(\^\theta n) - 1\nabla \theta H(\^\theta n+1), \^\theta 0 = \theta , n = 1, 2, . . . , N (semi-implicit Euler scheme).

We denote F (\theta \prime ) = G(\theta \prime ) - 1\nabla \theta F (\theta 
\prime \prime ) and set

L1 = max
1\leq n\leq N

\Bigl\{ 
\| F (\theta n) - F (\^\theta n)\| /\| \theta n  - \^\theta n\| 

\Bigr\} 
,

L2 = max
1\leq k\leq N

\{ \| \nabla \theta H(\^\theta n) - \nabla \theta H(\^\theta n+1)\| /\| \^\theta n  - \^\theta n+1\| \} ,

M1 = max
1\leq n\leq N

\{ \| G(\^\theta n) - 1\| \} , M2 = max
1\leq n\leq N

\{ \| \nabla \theta H(\^\theta n)\| \} ,

where \| \cdot \| is a vector norm (or its corresponding matrix norm).

Theorem 5.22 (relation between forward Euler and proposed semi-implicit

schemes). The numerical solutions \theta n and \^\theta n of the forward Euler and semi-implicit
schemes with time step size h and Nh = T satisfy

\| \theta n  - \^\theta n\| \leq ((1 + L1h)
n  - 1)

M2
1M2L2

L1
h, n = 1, 2, . . . , N.

This result implies that \| \theta n - \^\theta n\| can be upper bounded by (eL1T  - 1)
M2

1M2L2

L1
h.

When assuming the upper bounds L1, L2,M1,M2 \sim O(1) as h \rightarrow 0 (or equivalently
N \rightarrow \infty ), the differences between our proposed semi-implicit scheme and the forward
Euler scheme can be bounded by O(h). As a consequence, we are able to establish an
O(h) error bound for our proposed scheme (4.8).

Proof of Theorem 5.22. If we subtract (5.50) from (5.49),

(\theta n+1  - \^\theta n+1) = (\theta n  - \^\theta n) - h(G(\theta n)
 - 1\nabla \theta H(\theta n) - G(\^\theta n)

 - 1\nabla \theta H(\^\theta n+1)),

and denote en = \theta n  - \^\theta n and F (\theta ) = G(\theta n)
 - 1\nabla \theta H(\theta ), we may rewrite this equation

as

en+1 = en  - h(F (\theta n) - F (\^\theta n) +G(\^\theta n)
 - 1(\nabla \theta H(\^\theta n) - \nabla \theta H(\^\theta n+1))).

Recalling the definitions of L1, L2,M1, we have

\| en+1\| \leq \| en\| + hL1\| en\| + hM1L2\| \^\theta n+1  - \^\theta n\| .

By the semi-implicit scheme, we have

\^\theta n+1  - \^\theta n =  - hG(\^\theta n) - 1\nabla \theta H(\^\theta n+1).
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Thus | \^\theta n+1  - \^\theta n\| \leq hM1M2. This gives us a recurrent inequality,

\| en+1\| \leq \| en\| + hL1\| en\| +M2
1M2L2h

2,

which implies

\biggl( 
\| en+1\| +

M2
1M2L2

L1
h

\biggr) 
\leq (1 + hL1)

\biggl( 
\| en\| +

M2
1M2L2

L1
h

\biggr) 
, n = 0, 1, . . . , N  - 1.

This leads to

\| en\| \leq ((1 + hL1)
n  - 1)

M2
1M2L2

L1
h.

When we solve the ODE on [0, T ] with h = T/N , we have (1+hL1)
n \leq (1+hL1)

N =\bigl( 
1 + L1T

N

\bigr) N \leq eL1T . This means all terms \{ \| en\| \} 1\leq n\leq N can be upper bounded by

(eL1T  - 1)
M2

1M2L2

L1
h.

Remark 5.23. In order to make our argument clear and concise, we omitted the
errors introduced by the approximation of ReLU function \psi \nu . Careful analysis on
how well \nabla \psi \nu can approximate a general gradient field is among our future research
directions.

Remark 5.24. The convergence property of the SGD method (mainly the Adam
method) used in our Algorithm 4.1 is not discussed in details. One can check its
convergence analysis in the paper [26]. Based on our experiences, for most of the
smooth potential functions V \in \scrV with diffusion coefficient D not too small (i.e.,
D > 0.1), our algorithm shows convergent behavior and produces accurate results
when checking against the true solution if it is possible.

6. Numerical examples. In this section, we consider solving the Fokker--Planck
equation (2.2) on \BbbR d with initial condition \rho 0(x) = \scrN (0, Id) by using Algorithm 4.1.2

We demonstrate several numerical examples with different potential functions V . In
the following experiments, unless specifically stated, we choose the length of normaliz-
ing flow T\theta as 60. We set \psi \nu : \BbbR d \rightarrow \BbbR as the ReLU network with the number of layers
equal to 6 and hidden dimension equal to 20. We use the Adam (adaptive moment es-
timation) SGD method [26] with default parameters D1 = 0.9, D2 = 0.999; \epsilon = 10 - 8.
For the parameters of Algorithm 4.1, we choose \alpha out = 0.005, \alpha in = 0.0005. We follow
Remark 4.11 to choose Kin,Kout = max\{ 1000, 300d\} . Based on our experience, we
set Mout = O( h

\alpha out
). The suitable value of Min can be chosen after several quick tests

to make sure that every inner optimization problem (4.27) can be solved.
Our Python code can be downloaded from the Github website: https://github.

com/LSLSliushu/Parametric-Fokker-Planck-Equation.

6.1. Quadratic potential. Our first set of examples uses quadratic potential
V . In this case, we can compute the explicit solution of (2.2). These examples are
used for verification purposes, because we can check the results with exact solutions.

2We can set initial value \theta 0 so that T\theta 0 = Id, and thus \rho 0 = T\theta 0 \sharp 
p is a standard Gaussian

distribution.
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(a) \{ \^\mu (k)\} (b) \{ \^\mu (k)1 \} (c) \{ (\^\Sigma (k)
11 ,

\^\Sigma 
(k)
22 )\} (d) \{ (\^\mu (k), \^\Sigma 

(k)
11 )\} 

Fig. 7. Plot of empirical statistics (numerical solution: blue; real solution: red). (Color
available online.)

6.1.1. 2D cases. We take d = 2 and set V (x) = 1
2 (x  - \mu )T\Sigma  - 1(x  - \mu ), with

\mu = [3, 3]T and \Sigma = diag([0.25, 0.25]). The solution of (2.2) is

\rho t = \scrN (\mu (t),\Sigma (t)) \mu (t) = (1 - e - 4t)\mu , \Sigma (t) =

\biggl[ 
1
4 + 3

4e
 - 8t

1
4 + 3

4e
 - 8t

\biggr] 
, t \geq 0.

We solve the equation in time interval [0, 0.7] with time step size 0.01. We setMout =
20 and Min = 100.

To compare against the exact solution, we setM = 6000 and sample \{ \bfitX 1, . . . ,\bfitX M\} 
\sim T\theta k \sharp p at time tk and use

\^\mu k =
1

M

M\sum 

j=1

\bfitX j , \^\Sigma k =
1

M  - 1

M\sum 

j=1

(\bfitX j  - \^\mu k)(\bfitX j  - \^\mu k)
T

to compute for its empirical mean and covariance of \^\rho k. We plot the blue curves

\{ \^\mu (k)\} , \{ \^\mu (k)
2 \} , \{ (\^\Sigma (k)

11 ,
\^\Sigma 
(k)
22 )\} , \{ (\^\mu (k)

1 , \^\Sigma 
(k)
11 )\} in Figure 7; these plots properly capture

the exponential convergence exhibited by the explicit solution (red curves) \{ \mu (t)\} ,
\{ \mu 2(t)\} , \{ (\Sigma 11(t),\Sigma 22(t))\} , \{ (\mu 1(t),\Sigma 11(t))\} .

We also examine the network \psi \^\nu trained at the end of each outer iteration. Gen-
erally speaking, the gradient field \nabla \psi \^\nu reflects the movements of the particles under
the Vlasov-type dynamic (2.3) at every time step. Shown in Figures 8 and 9 are the
graphs of \psi \^\nu at k = 10 and k = 140, respectively. As we can see from these graphs,
the gradient field is in the same direction, but judging from the variation of two \psi \^\nu 's,
when k = 10, | \nabla \psi \^\nu | is much greater than its value at k = 140. This is because when
t = 140, the distribution is already close to the Gibbs distribution, and the particles
no longer need to move for a long distance to reach their final destination.

In the next example, we apply our algorithm to the Fokker--Planck equation with
nonisotropic potential

V (x) =
1

2
(x - \mu )T\Sigma  - 1(x - \mu ), \mu =

\biggl[ 
3
3

\biggr] 
, and \Sigma =

\biggl[ 
1

1
4

\biggr] 
.

One can verify that the solution to (2.2) is

\rho t = \scrN (\mu t,\Sigma t), \mu t =

\biggl[ 
3(1 - e - t)
3(1 - e - 4t)

\biggr] 
, \Sigma t =

\biggl[ 
1

1
4 (1 + 3e - 8t)

\biggr] 
.

We use the same parameters as before. We solve (2.2) at time interval [0, 1.4] with
time step size 0.005.
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1432 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

Fig. 8. Graph of \psi \^\nu after Mout = 20
outer iterations at k = 10th time step.

Fig. 9. Graph of \psi \^\nu after Mout = 20
outer iterations at k = 140th time step.

Fig. 10. Mean trajectory of \{ \rho \theta t\} 
w.r.t. \.\theta =  - G(\theta ) - 1\nabla \theta H(\theta ).

Fig. 11. Mean trajectory of \{ \rho \theta t\} 
w.r.t. \.\theta =  - \nabla \theta H(\theta ).

Similarly, we also plot the empirical mean trajectory; one can compare it with the
true solution \mu (t) = (3(1 - e - t), 3(1 - e - 4t)). Both the curvature and the exponential
convergence to \mu are captured by our numerical result. To demonstrate the effective-
ness of our formulation, we also compare the mean trajectory obtained by our result
(Figure 10) with the mean trajectory obtained by computing the flat gradient flow
\.\theta =  - \nabla \theta H(\theta ) (Figure 11). It reveals very different behavior of the flat gradient (\nabla \theta )
flow and Wasserstein gradient (G(\theta ) - 1\nabla \theta ) flow. Clearly, our approximation based on
Wasserstein gradient flow captures the exact mean function much more accurately.
We compare the graph of trained \psi \^\nu at different time steps k = 10, 140 (Figures 12
and 13). The directions of \nabla \psi \^\nu at k = 10 and k = 140 are different from the previous
example. This is caused by the nonisotropic quadratic (Gaussian) potential V used
in this example.

6.1.2. Verification of the error estimate. We verify the O(h) error estima-
tion discussed in section 5.3.2 based on numerical experiments with quadratic po-
tentials. We consider V (x) = | x  - \mu | 2 defined on \BbbR 2 with \mu = (12.0, 12.0) and \rho 0
as standard Gaussian at time interval [0, 1]. We run our algorithm with several dif-
ferent time step sizes h = 0.01, 0.05, 0.08, 0.1, 0.2, 0.3 and record their corresponding
mean trajectory \{ \^\mu (k)\} as defined in section 6.1.1. During this process, we need to
adjust our hyperparameters \alpha in, \alpha out,Min,Mout correspondingly in order to guaran-
tee the convergence of the Adam method. Denote \{ \mu (tk)\} as the real solution. We
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Fig. 12. Graph of \psi \^\nu after Mout = 20
outer iterations at k = 10th time step.

Fig. 13. Graph of \psi \^\nu after Mout = 20
outer iterations at k = 140th time step.

Fig. 14. Numerical errors versus time step size h.

compute the average l2 error of mean values as AveErr(h) = 1
N

\sum 
k | \^\mu (k)  - \mu (tk)| .

We pick h in a range larger than 0.01 because when h is smaller, the influence from
the approximation error \delta 0 of normalizing flow T\theta as well as initial error W2(\rho 0, \rho \theta 0)
start to dominate the overall error. Figure 14 exhibits the linear relationship between
our numerical error AveErr(h) and time step size h, which confirms our theoretical
estimates.

Remark 6.1. The reason for choosing quadratic potential is because its corre-
sponding Fokker--Planck equation has an explicit solution. The reason that we focus
on the average error of mean vectors is mainly due to computational accuracy and
convenience: one can approximate the error of the mean vector of a distribution by
computing the arithmetic average of samples, which is faster and more accurate than
computing for the L2-Wasserstein error among two distributions.
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1434 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

(a) projection of samples on
the 0-1 plane

(b) projection of samples on
the 4-5 plane

(c) projection of samples on
the 8-9 plane

Fig. 15. Sample points of computed \rho \theta t projected on different planes at t = 2.0.

6.1.3. Higher dimension. We implement our algorithm in higher dimensional
space. In the next example, we take d = 10 and consider the quadratic potential

V (x) =
1

2
(x - \mu )T\Sigma  - 1(x - \mu ), \Sigma = diag(\Sigma A, I2,\Sigma B , I2,\Sigma C), \mu = (1, 1, 0, 0, 1, 2, 0, 0, 2, 3)T.

Here we set the diagonal blocks as

\Sigma A =

\biggl[ 
5
8  - 3

8
 - 3

8
5
8

\biggr] 
, \Sigma B =

\biggl[ 
1

1
4

\biggr] 
, \Sigma C =

\biggl[ 
1
4

1
4

\biggr] 
.

We solve the equation at time interval [0, 0.7] with time step size 0.005. We
set Mout = 20 and Min = 100. To demonstrate the results, 6000 samples from the
reference distribution p are drawn and pushed forward by using our computed map
T\theta k . We plot a few snapshots of the pushed forward points (from t = 0.05 to t = 0.70)
in Figure 15. One can check that the distribution of our numerical computed samples
gradually converges to the Gibbs distribution \scrN (\mu ,\Sigma ).

We solve (2.2) at time interval [0, 2] with time step size h = 0.005. We set
Kin = Kout = 3000 and choose Mout = 30, Min = 100. To demonstrate the results,
6000 samples from the reference distribution p are drawn and pushed forward by
using our computed map T\theta k . We exhibit the projection of the samples on the 0-1,
4-5, and 8-9 planes in Figure 15 at time t = 2.0. One can verify that the distribution
of our numerical computed samples converges to the Gibbs distribution \scrN (\mu ,\Sigma ). The
explicit solution to the Fokker--Planck equation is always the Gaussian distribution
\scrN (\mu (t),\Sigma (t)) with mean \mu (t) and covariance matrix \Sigma (t):

\mu (t) = (1 - e - t, 1 - e - t, 0, 0, 1 - e - t, 2(1 - e - 4t), 0, 0, 2(1 - e - 4t), 3(1 - e - 4t))T,

\Sigma (t) = diag(\Sigma A(t), I,\Sigma B(t), I,\Sigma C(t)),

with \Sigma A(t) =

\biggl[ 
5
8 + f(t)  - 3

8 + f(t)
 - 3

8 + f(t) 5
8 + f(t)

\biggr] 
, \Sigma B(t) =

\biggl[ 
1

1+3e - 8t

4

\biggr] 
,

\Sigma C(t) =

\Biggl[ 
1+3e - 8t

4
1+3e - 8t

4

\Biggr] 
,

where f(t) =  - 2

7
e - t +

1

3
e - 2t +

55

168
e - 8t.

To compare against the exact solution, we set sample size M = 6000 and compute
the empirical mean \^\mu k and covariance \^\Sigma k of our numerical solution \^\rho k at time tk.
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Fig. 16. Mean error (l2).
Fig. 17. Covariance error

(\| \cdot \| F ).
Fig. 18. Plot of \{ H(\theta )\} .

We evaluate the error between \^\mu (k) and \mu (tk), \^\Sigma (k) and \Sigma (tk). We plot the error
curves of \| \^\mu (k)  - \mu (tk)\| 2 (Figure 16) and \| \^\Sigma (k)  - \Sigma (tk)\| F (Figure 17). Here \| \cdot \| F
is the matrix Frobenius norm. Figure 18 captures the exponential decay of H along
its Wasserstein gradient flow; this verifies the entropy dissipation property of the
Fokker--Planck equation with convex potential function V .

In this case, we take a closer look at the loss in the inner loops. Figure 19 shows
the first 10 (out of 20) loss plots when applying the SGD method to solve (4.30) with
k = 200 (t = 200 \cdot h = 1.0). The remaining loss plots from the 11th outer iteration to
20th iteration are similar to the plots in the second row. The situations are similar
for other time steps k. We believe that Min = 100 works well in this problem; the
SGD method we used can thoroughly solve the variational problem (4.30) for each
outer loop.

(a) 1st iteration (b) 2nd iteration (c) 3rd iteration (d) 4th iteration (e) 5th iteration

(f) 6th iteration (g) 7th iteration (h) 8th iteration (i) 9th iteration (j) 10th iteration

Fig. 19. Plots of inner loop losses.

6.2. Experiments with more general potentials. In this section, we exhibit
two examples with more general potentials in higher dimensional space.

6.2.1. Styblinski--Tang potential. In this example, we set dimension d = 30
and consider the Styblinski--Tang function [65]

V (x) =
3

50

\Biggl( 
d\sum 

i=1

x4i  - 16x2i + 5xi

\Biggr) 
.
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1436 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

We solve (2.2) with potential V on time interval [0, 3] with time step size h = 0.005.
We set Kin = Kout = 9000 and Min = 100, Mout = 30.

To exhibit sample results, due to the symmetric structure of the potential func-
tion, we project the sample points in \BbbR 30 to some random plane, such as the 5-15 plane
used in this paper. The sample plots and their estimated densities are presented in
Figure 20.

(a) t = 0.30 (b) t = 0.60 (c) t = 0.90 (d) t = 1.20 (e) t = 1.50 (f) t = 1.80

(g) t = 0.30 (h) t = 0.60 (i) t = 0.90 (j) t = 1.20 (k) t = 1.50 (l) t = 1.80

Fig. 20. Sample points and estimated densities of \rho \theta t on the 5-15 plane at different time nodes.

In this special example, the potential function is the direct addition of the same
functions; we can exploit this property and show that any marginal distribution

\varrho j(xj , t) =

\int 
\cdot \cdot \cdot 
\int 
\rho (x, t) dx1 . . . dxj - 1dxj+1 . . . dxd

of the solution \rho t solves the following the 1D Fokker--Planck equation:

\partial \varrho (x, t)

\partial t
=

\partial 

\partial x
(\varrho (x, t) V \prime (x)) +D\Delta \varrho (x, t), \varrho (\cdot , 0) = \scrN (0, 1),

with V (x) =
3

50
(x4  - 16x2 + 5x).

(6.1)

We then solve the SDE associated to (6.1):

(6.2) dXt =  - V \prime (Xt) dt+
\surd 
2DdBt, X0 \sim \scrN (0, 1).

Since (6.2) is an SDE in 1D space, we can solve it with high accuracy by the Euler--
Maruyama scheme [28] and use it as a benchmark for our numerical solution. Figure 21
exhibits both the estimated densities for our numerical solutions (marginal distribu-
tion on the 15th component) and the solution of (6.2) given by the Euler--Maruyama
scheme with step size 0.005. The sample sizes for both solutions equal 6000.

We also illustrate the graphs of \psi \^\nu on the 5-15 plane trained at different time
steps in Figure 22.

6.2.2. Affects of different initial distributions. Different initial conditions
\rho 0 affect the behavior of solutions of the neural parametric Fokker--Planck equation
differently, especially on the convergence speed to the Gibbs distribution. Here is
an example. We consider V the Styblinski--Tang potential in \BbbR 2. We compute the
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(a) t = 0.30 (b) t = 0.60 (c) t = 0.90 (d) t = 1.20 (e) t = 1.50 (f) t = 1.80

Fig. 21. Estimated densities of our numerical solution (red) (projected onto the 15th compo-
nent) and the solution given by the Euler--Maruyama scheme (blue). (Color available online.)

(a) \psi \^\nu at k = 30 (b) \psi \^\nu at k = 150 (c) \psi \^\nu at k = 360

Fig. 22. Graph of \psi \^\nu on the 5-15 plane trained at different time steps.

solutions with three different initial distributions given as Gaussian distributions with
covariances

\Sigma 1 =

\biggl[ 
1

1

\biggr] 
, \Sigma 2 =

\Biggl[ 
13
8

5
8

5
8

13
8

\Biggr] 
, \Sigma 3 =

\Biggl[ 
13
8  - 5

8

 - 5
8

13
8

\Biggr] 
,

respectively. Although the solutions converge to the Gibbs distribution, as expected
from the theory, regardless of the initial density, their convergence speed may be differ-
ent. Figure 23 shows the initial distributions and the corresponding densities (which
are the estimations of the samples obtained from our algorithm) at t = 1.0. As we
can observe, the numerical result produced by \rho 0 = \scrN (0,\Sigma 1) is already close to the
Gibbs distribution at t = 1.0, while numerical results associated to \Sigma 2,\Sigma 3 still have
noticeable differences from Gibbs. They seem to be trapped in intermediate meta-
stable statuses that are clearly influenced by the orientations in initial distributions.

(a)
\rho 0 = \scrN (0,\Sigma 1)

(b) t = 1.0
(c)
\rho 0 = \scrN (0,\Sigma 2)

(d) t = 1.0
(e)
\rho 0 = \scrN (0,\Sigma 3)

(f) t = 1.0

Fig. 23. Different behaviors of numerical solution with different \rho 0's.

In general, we believe that the choice of \rho 0 affects the behavior of numerical
solution. Choosing a suitable \rho 0 may shorten the computing time in the training
process.

6.2.3. Solving the equation with different diffusion coefficients. The dif-
ferent behaviors of the Fokker--Planck equation caused by different diffusion coeffi-
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1438 SHU LIU, WUCHEN LI, HONGYUAN ZHA, AND HAOMIN ZHOU

cients D can be captured by our algorithm. As Figure 24 shows, we apply our method
to solve the Fokker--Planck equation with the Styblinski--Tang potential function with
D = 0.1, 1.0, 10.0 and exhibit samples points and estimated density surfaces at time
t = 3.0.

(a) Samples D = 10 (b) Samples D = 1 (c) Samples D = 0.1

(d) Density D = 10 (e) Density D = 1 (f) Density D = 0.1

Fig. 24. Samples and estimated densities at t = 3.0; from left to right: D = 10, D = 1.0, D = 0.1.

6.2.4. Rosenbrock potential. In this example, we set dimension d = 10. We
consider the Rosenbrock-type function [61]

V (x) =
3

50

\Biggl( 
d - 1\sum 

i=1

10(xk+1  - x2k)
2 + (xk  - 1)2

\Biggr) 
,

which involves interactions among its coordinates. We solve the corresponding (2.2)
on time interval [0, 1] with step size h = 0.005. We set the length of normalizing flow
T\theta as 100. We set Kin = Kout = 3000 and Min = 100, Mout = 60.

We exhibit the projection of sample points on the 1-2, 7-8, and 9-10 planes in
Figure 25. Blue samples are obtained from our numerical solution, while red samples
are obtained by applying the Euler--Maruyama scheme with the same step size.

6.3. Discussion on time consumption. We should point out that the running
time of our algorithm depends on the following three aspects:

(i) Dimension d of the problem; potential function V .
(ii) The size of normalizing flow T\theta and fully connected neural network \psi \nu .
(iii) Number of time steps N ; outer iterations Mout; inner iterations Min; sample

size Kout and Kin.
Among them, the networks in (ii) are selected according to (i). The hyperparameters
Mout,Mout,Kout,Kin in (iii) are chosen based on our trial and error as well as Remark
4.10 stated earlier in this paper.

All numerical examples reported in this paper are computed on a laptop with an
Intel Core i5-8250U CPU @ 1.60GHz \times 8 processor. For most of the high-dimensional
examples (d \geq 10), we choose the length of T\theta between 60 and 100; for the ReLU
network \psi \nu , we set its number of layers equal to 6 with hidden dimension 20. We set
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(a) t = 0.05 (b) t = 0.35 (c) t = 0.50 (d) t = 1.00

(e) t = 0.05 (f) t = 0.35 (g) t = 0.50 (h) t = 1.00

(i) t = 0.05 (j) t = 0.35 (k) t = 0.50 (l) t = 1.00

Fig. 25. Samples of our numerical solution (blue) and Euler--Maruyama (red) on different
planes at different time nodes. (Color available online.)

Mout \sim 50,Min \sim 100 and choose sample sizes Kout,Kin according to Remark 4.10.
The total running time is ranged in 20--40 hours.

We observe that the running time of our algorithm is dominated by the inner
loop of Algorithm 4.1, i.e., the part for optimizing over \psi \nu . The cost associated with
this part can be estimated as O(N \cdot Mout \cdot Min \cdot (Kinta + tb)), where ta denotes the
time cost of using backpropagation to evaluate the gradient with respect to \nu of each
| \nabla \psi \nu (T\theta 0(Xk))  - (T\theta (Xk)  - T\theta 0(Yk))| 2 in every inner loop of Algorithm 4.1, and tb
denotes the time for updating \nu by the Adam method. Here ta, tb both depend on
d, V and the sizes of networks T\theta , \psi \nu . According to our experiences, for most of the
cases, ta is of the order of magnitude around 10 - 5s and tb is around 10 - 2s.

Although the cost for our current implementation of the train process is still
high, we want to recall that there is a distinct advantage in the sampling application,
namely, that the network training needs to be done only once. The trained network
can be reused to generate samples, regardless of the sample size, from distribution \rho t
by pushing forward samples from the reference distribution p with negligible additional
cost. This is in sharp contrast to the classical MCMC sampling techniques, which
require one to solve the SDE associated with the Fokker--Planck equation by numerical
methods, such as the Euler--Maruyama scheme, for every sample.
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7. Discussion. In this paper, we design and analyze an algorithm for computing
the high-dimensional Fokker--Planck equations. Our approach is based on transport
information geometry with probability formulations stemming from deep learning gen-
erative models. We first introduce the parametric Fokker--Planck equations, a set of
ODEs, to approximate the original Fokker--Planck equation. The ODE can be viewed
as the ``spatial"" discretization of the PDE using neural networks. We propose a vari-
ational version of the semi-implicit Euler scheme and design a discrete time updating
algorithm to compute the solution of the parametric Fokker--Planck equations. Our
method is a sampling-based approach that is capable of handling high-dimensional
cases. It can also be viewed as an alternative to the JKO scheme used in conjunction
with neural networks. More importantly, we prove the asymptotic convergence and
error estimates, both under the Wasserstein metric, for our proposed scheme.

We hope that our study may shed light on principally designing deep neural net-
works and other machine learning approaches to compute solutions of high-dimen-
sional PDEs, and systematically analyzing their error bounds for understandable
and trustworthy computations. Our parametric Fokker--Planck equations are de-
rived by approximating the density function in free energy using neural networks,
and then following the rules in calculus of variation to get its Euler--Lagrange equa-
tion. The energy law and principles in variational framework build a solid foundation
for our ``spatial"" discretization that is able to inherit many desirable physical prop-
erties shared by the PDEs, such as relative entropy dissipation in a neural network
setting. Our numerical scheme provides a systemic mechanism to design sampling
efficient algorithms, which are critical for high-dimensional problems. One distinction
of our method is that, contrary to the data-dependent machine learning studies in
the literature, our approach does not require any knowledge of the ``data"" from the
PDEs. In fact, we generate the ``data"" to compute the numerical solutions, just like
the traditional numerical schemes do for PDEs. More importantly, we carried out the
numerical analysis, using tools such as KL divergence and the Wasserstein metric from
the transport information geometry, to study the asymptotic convergence and error
estimates in probability space. We emphasize that the Wasserstein metric provides a
suitable geometric structure to analyze the convergence behavior in generative mod-
els, which are widely used in machine learning. For this reason, we believe that our
investigations can be adopted to understand many machine learning algorithms, and
to design efficient sampling strategies based on pushforward maps that can generate
flows of samples in generative models.

We also believe that the approaches in algorithm design and error analysis de-
veloped in this study can be extended to other equations, such as the porous media
equation, the Schr\"odinger equation, the Schr\"odinger bridge system, and many more.
These topics are worth further investigating in the future.

Appendix A. Proof of Lemma 3.3.

Lemma 3.3. Suppose \vec{}u,\vec{}v are two vector fields defined on \BbbR d, and suppose \varphi ,\psi 
solves  - \nabla \cdot (\rho \nabla \varphi ) =  - \nabla \cdot (\rho \vec{}u) and  - \nabla \cdot (\rho \nabla \psi ) =  - \nabla \cdot (\rho \vec{}v), or equivalently Proj\rho [\vec{}u] =
\nabla \varphi and Proj\rho [\vec{}v] = \nabla \psi (cf. Definition 4.2). Then

\int 
\vec{}u(x) \cdot \nabla \psi (x)\rho (x) dx =

\int 
\nabla \varphi (x) \cdot \nabla \psi (x)\rho (x) dx,(3.3)

\int 
| \nabla \psi (x)| 2\rho (x) dx \leq 

\int 
| \vec{}v(x)| 2\rho (x) dx.(3.4)

D
ow

nl
oa

de
d 

01
/1

9/
25

 to
 7

6.
94

.2
09

.2
19

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEURAL PARAMETRIC FOKKER--PLANCK EQUATION 1441

Proof of Lemma 3.3. For (3.3),
\int 
\vec{}u(x) \cdot \nabla \psi (x)\rho (x) dx =

\int 
 - \nabla \cdot (\rho (x)\vec{}u(x))\psi (x) dx =

\int 
 - \nabla \cdot (\rho (x)\nabla \varphi (x))\psi (x) dx

=

\int 
\nabla \varphi (x) \cdot \nabla \psi (x)\rho (x) dx.

For (3.4),
\int 

| \vec{}v(x)| 2\rho (x) dx =

\int 
(| \nabla \psi (x)| 2 + 2(\vec{}v(x) - \nabla \psi (x)) \cdot \nabla \psi (x) + | \vec{}v(x) - \nabla \psi (x)| 2)\rho (x) dx

=

\int 
(| \nabla \psi (x)| 2 + | \vec{}v(x) - \nabla \psi (x)| 2)\rho (x) dx \geq 

\int 
| \nabla \psi (x)| 2\rho (x) dx.

The second equality is due to (3.3).

Appendix B. Proof of Theorem 3.7 .

Theorem 3.7. Suppose \{ \theta t\} t\geq 0 solves (3.18). Then \{ \rho \theta t\} is the gradient flow of
\scrH on probability submanifold \scrP \Theta . Furthermore, at any time t, \.\rho \theta t =

d
dt\rho \theta t \in \scrT \rho \theta t\scrP \Theta 

is the orthogonal projection of  - gradW\scrH (\rho \theta t) \in \scrT \rho \theta t\scrP onto the subspace \scrT \rho \theta t\scrP \Theta with

respect to the Wasserstein metric gW .

Theorem 3.7 easily follows from the following two general results about the man-
ifold gradient.

Theorem B.1. Suppose (N, gN ), (M, gM ) are Riemannian manifolds. Suppose
\varphi : N \rightarrow M is isometric. Consider \scrF \in \scrC \infty (M), and define F = \scrF \circ \varphi \in \scrC \infty (N).
Suppose \{ xt\} t\geq 0 is the gradient flow of F on N :

\.x =  - gradNF (x).

Then \{ yt = \varphi (xt)\} t\geq 0 is the gradient flow of \scrF on M . That is, \{ yt\} satisfies \.y =
 - gradM\scrF (y).

Proof. Since we always have \.yt = \varphi \ast \.xt =  - \varphi \ast gradNF (xt), we only need to show
that \varphi \ast gradNF (xt) = gradM\scrF (\varphi (xt)). Fix the time t, and consider any curve \{ \xi \tau \} 
on N passing through xt at \tau = 0; since \varphi is isometric, we have gN = \varphi \ast gM , and thus

d

d\tau 
F (\xi \tau )

\bigm| \bigm| \bigm| 
\tau =0

= gN (gradNF (xt),
\.\xi 0) = \varphi \ast gM (gradNF (xt),

\.\xi 0)

= gM (\varphi \ast gradNF (xt), \varphi \ast \.\xi 0).

On the other hand, denoting \eta \tau = \varphi (\xi \tau ), we have

d

d\tau 
F (\xi \tau )

\bigm| \bigm| \bigm| 
\tau =0

=
d

d\tau 
\scrF (\eta \tau )

\bigm| \bigm| \bigm| 
\tau =0

= gM (gradM\scrF (yt), \.\eta 0) = gM (gradM\scrF (yt), \varphi \ast \.\xi 0).

As a result, gM (\varphi \ast gradNF (xt) - gradM\scrF (yt), \varphi \ast \.\xi 0) = 0 for all \.\xi 0 \in Txt
N . Since \varphi \ast 

is surjective, we have \varphi \ast gradNF (xt) = gradM\scrF (\varphi (xt)).

Theorem B.2. Suppose (M, gM ) is a Riemannian manifold, and Msub \subset M is
the submanifold of M . Assume Msub inherits metric gM , i.e., define \iota : Msub \rightarrow M
as the inclusion map, which induces a metric tensor on Msub as gMsub = \iota \ast gM . For
any \scrF \in \scrC \infty (M), denote the restriction of \scrF on Msub by \scrF sub. Then the gradient
gradMsub

\scrF sub(x) \in TxMsub is the orthogonal projection of gradM\scrF (x) \in TxM onto
subspace TxMsub with respect to the metric gM for any x \in Msub.
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Proof. For any x \in Msub, consider any curve \{ \gamma \tau \} on M sub passing through x
at \tau = 0. We have

d

d\tau 
\scrF sub(\gamma \tau )

\bigm| \bigm| \bigm| 
\tau =0

= gMsub(gradMsub
\scrF sub(x), \.\gamma 0) = gM (\iota \ast gradMsub

\scrF sub(x), \iota \ast \.\gamma 0)

= gM (gradMsub
\scrF sub(x), \.\gamma 0).

The last equality is because \iota \ast restricted on TMsub is the identity. On the other hand,
\scrF sub(\gamma \tau ) = \scrF (\gamma \tau ) for all \tau . We also have

d

d\tau 
\scrF sub(\gamma \tau )

\bigm| \bigm| \bigm| 
\tau =0

= gM (gradM\scrF (x), \.\gamma 0).

Combining them, we know

gM (gradMsub
\scrF sub(x) - gradM\scrF (x), v) = 0

\forall v \in TxMsub \Rightarrow gradMsub
\scrF sub(x) - gradM\scrF (x) \bot gM TxMsub,

which proves this result.

Proof of Theorem 3.7. To prove the first part of Theorem 3.7, we apply Theorem
B.1 with (N, gN ) = (\Theta , G), M = \scrP \Theta with its metric inherited from (\scrP , gW ) and
\varphi = T(\cdot )\sharp . To prove the second part, we apply Theorem B.2 with (M, gM ) = (\scrP , gW ),
Msub = \scrP \Theta .

Appendix C. Proof of Lemmas 4.6, 4.7, and 4.8.

Lemma 4.6. Suppose we fix \theta 0 \in \Theta ; for arbitrary \theta \in \Theta and \nabla \phi \in L2(\BbbR d;\BbbR d, \rho \theta 0)
we consider
(4.14)

F (\theta ,\nabla \phi | \theta 0) =
\biggl( \int 

(2\nabla \phi (x) \cdot (T\theta  - T\theta 0) \circ T - 1
\theta 0

(x) - | \nabla \phi (x)| 2) \rho \theta 0(x) dx
\biggr) 
+2hH(\theta ).

Then F (\theta ,\nabla \phi | \theta 0) <\infty , and furthermore F (\cdot ,\nabla \phi | \theta 0) \in C1(\Theta ). We can compute

(4.15) \partial \theta F (\theta ,\nabla \phi | \theta 0) = 2

\biggl( \int 
\partial \theta T\theta (T

 - 1
\theta 0

(x))T \nabla \phi (x) \rho \theta 0(x) dx+ h \nabla \theta H(\theta )

\biggr) 
.

Proof. To show F (\theta ,\nabla \phi | \theta 0) <\infty , we write

F (\theta ,\nabla | \theta 0) =
\int 

2\nabla \phi \cdot T\theta (T - 1
\theta 0

(x))\rho \theta 0 dx

\underbrace{}  \underbrace{}  
A

 - 
\int 

2\nabla \phi (T\theta 0(x)) \cdot xdp(x)
\underbrace{}  \underbrace{}  

B

 - 
\int 

| \nabla \phi (x)| 2\rho \theta 0(x) dx
\underbrace{}  \underbrace{}  

C

+2hH(\theta ).

By the Cauchy--Schwarz inequality, the first two terms can be estimated as

| A - B| \leq 2\| \nabla \phi \| L2(\rho \theta 0 )

\biggl( \int 
| T\theta (x)| 2dp(x) +

\int 
x2dp(x)

\biggr) 
.

Recalling (3.1) and p having finite second order moment, we know the first two terms
are finite. In addition C = \| \nabla \phi \| 2L2(\rho \theta 0 )

<\infty . We thus have shown F (\theta ,\nabla \phi | \theta 0) <\infty .
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To show F (\cdot ,\nabla \phi | \theta 0) \in C1(\Theta ), recall T\theta (x) \in C2(\Theta \times \BbbR d) as mentioned in
section 3.1. We know the relative entropy H(\cdot ) \in C1(\Theta ), and thus we only need to
prove for \~F (\cdot ,\nabla \phi | \theta 0) = F (\cdot ,\nabla \phi | \theta 0)  - 2hH(\theta ). We consider \xi \in \BbbR m with | \xi | small
enough and \theta + \xi \in \Theta . Then the difference is

(C.1) \~F (\theta + \xi ,\nabla \phi | \theta 0) - \~F (\theta ,\nabla \phi | \theta 0) =
\int 

2\nabla \phi (x) \cdot (T\theta +\xi  - T\theta ) \circ T - 1
\theta 0

(x) \rho \theta 0(x) dx.

We denote the ith component of T\theta by T
(i)
\theta , 1 \leq i \leq d. By Taylor expansion (with

respect to \theta ), we have T
(i)
\theta +\xi (x)  - T

(i)
\theta (x) = \partial \theta T

(i)
\theta (x)T\xi + 1

2\xi 
T\partial 2\theta \theta T\theta +\lambda i(x)\xi (x)\xi with

\lambda i(x) \in [0, 1], and then the right-hand side of (C.1) is

(C.2)

\biggl( \int 
2\partial \theta T\theta (T

 - 1
\theta 0

(x))T\nabla \phi (x)\rho \theta 0 dx
\biggr) T

\xi 

\underbrace{}  \underbrace{}  
Denote by \scrJ (\theta )T\xi 

+

\int \Biggl( d\sum 

i=1

\partial xi\phi \cdot (\xi T\partial 2\theta \theta T (i)
\theta +\lambda i(x)\xi 

(T - 1
\theta 0

(x))\xi )

\Biggr) 
\rho \theta 0 dx.

By the Cauchy--Schwarz inequality, the sum in the second term of (C.2) can be esti-
mated as

\Biggl( 
d\sum 

i=1

| \partial xi
\phi | 2
\Biggr) 1

2

\cdot 
\Biggl( 

d\sum 

i=1

| \xi T\partial 2\theta \theta T (i)
\theta +\lambda i(x)\xi 

(T - 1
\theta 0

(x))\xi | 2
\Biggr) 1

2

\leq | \nabla \phi | \cdot 
\Biggl( 

d\sum 

i=1

\| \partial 2\theta \theta T (i)
\theta +\lambda i(x)\xi 

(T - 1
\theta 0

(x))\| 22

\Biggr) 1
2

| \xi | 2.

Let us recall (4.13) and that the absolute value of the second term in (C.2) can be
upper bounded by

\biggl( \int 
| \nabla \phi | 2\rho \theta 0 dx

\biggr) 1
2

\cdot 
\Biggl( \int d\sum 

i=1

\| \partial 2\theta \theta T (i)
\theta +\lambda i(x)\xi 

(x)\| 22dp(x)
\Biggr) 1

2

| \xi | 2

\leq \| \nabla \phi \| 2L2(\rho \theta 0 )
\cdot 
\sqrt{} 
H(\theta 0, | \xi | )| \xi | 2.

As a result, we have

(C.3)
| \~F (\theta + \xi ,\nabla \phi | \theta 0) - \~F (\theta ,\nabla | \theta 0) - \scrJ (\theta )T\xi | 

| \xi | \leq \| \nabla \phi \| 2L2(\rho \theta 0 )
\cdot 
\sqrt{} 
H(\theta 0, | \xi | ) | \xi | .

Since H(\theta 0, \epsilon ) is increasing with respect to \epsilon , when we send | \xi | \rightarrow 0, the upper
bound in (C.3) approaches 0. This verifies the differentiability of \~F (\cdot ,\nabla \phi | \theta 0). Thus
F (\cdot ,\nabla \phi | \theta 0) is also differentiable and \partial \theta F (\theta ,\nabla \phi | \theta 0) = \scrJ (\theta )+2h\nabla \theta H(\theta ). At last, to
show that F (\cdot ,\nabla \phi | \theta 0) \in C1(\Theta ), we only need to prove the continuity of \scrJ (\theta ). One
only need notice that

2\partial \theta T
(i)
\theta \prime (T - 1

\theta 0
(x))T\nabla \phi (x) \leq | \partial \theta \prime T (i)

\theta (T - 1
\theta 0

(x))| 2 + | \nabla \phi (x)| 2 \leq L2(T
 - 1
\theta 0

(x)| \theta ) + | \nabla \phi (x)| 2

\forall \theta \prime , | \theta \prime  - \theta | < r(\theta ).

The last inequality is due to condition (3.2). Since L2(T
 - 1
\theta 0

(x)| \theta )+| \nabla \phi (x)| 2 \in L1(\rho \theta 0),
then by the dominated convergence theorem, we are able to prove the continuity of
\partial \theta F (\theta ,\nabla \phi | \theta 0).
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Lemma 4.7. Suppose we fix \theta 0 \in \Theta and define

J(\theta ) = sup
\nabla \phi \in L2(\BbbR d;\BbbR d,\rho \theta 0 )

F (\theta ,\nabla \phi | \theta 0).

Then J is differentiable. If we denote \^\psi \theta = argmax\phi \{ F (\theta ,\nabla \phi | \theta 0)\} , then

\nabla \theta J(\theta ) = \partial \theta F (\theta ,\nabla \^\psi \theta | \theta 0) = 2

\biggl( \int 
\partial \theta T\theta (T

 - 1
\theta 0

(x))T \nabla \^\psi \theta (x) \rho \theta 0(x) dx+ h \nabla \theta H(\theta )

\biggr) 
.

Proof. Let us denote \Xi \theta = (T\theta  - T\theta 0) \circ T - 1
\theta 0

. Then for any \xi \in \BbbR m such that

\theta + \xi \in \Theta , we set \^\psi \theta +\xi = argmax\phi \{ F (\theta + \xi ,\nabla \phi | \theta 0)\} . Then according to Definition

4.2, \^\psi \theta , \^\psi \theta +\xi solves

(C.4)  - \nabla \cdot (\rho \theta 0\nabla \^\psi \theta ) =  - \nabla \cdot (\rho \theta 0\Xi \theta ),  - \nabla \cdot (\rho \theta 0\nabla \^\psi \theta +\xi ) =  - \nabla \cdot (\rho \theta 0\Xi \theta +\xi ).

Subtracting the two equations, then multiplying \^\psi \theta +\xi  - \^\psi \theta on both sides and inte-
grating yields

\int 
| \nabla \^\psi \theta +\xi  - \nabla \^\psi \theta | 2\rho \theta 0 dx =

\int 
(\nabla \^\psi \theta +\xi  - \nabla \^\psi \theta ) \cdot (\Xi \theta +\xi  - \Xi \theta )\rho \theta 0 dx.

Then by the Cauchy--Schwarz inequality, we derive

\int 
| \nabla \^\psi \theta +\xi  - \nabla \^\psi \theta | 2\rho \theta 0 dx \leq 

\int 
| \Xi \theta +\xi  - \Xi \theta | 2\rho \theta 0 dx.

Now since \Xi \theta \xi (x)  - \Xi \theta (x) = (T\theta +\xi  - T\theta ) \circ T - 1
\theta 0

(x), by the mean value theorem, the

ith component of \Xi \theta +\xi (x)  - \Xi \theta (x) can be written as \partial \theta T
(i)
\theta +\lambda i(x)\xi 

(T - 1
\theta 0

(x))T\xi with

\lambda i(x) \in [0, 1]. Then, recalling the definition of L(\theta , \epsilon ) in (4.13), we can verify

\int 
| \Xi \theta +\xi  - \Xi \theta | 2\rho \theta 0 dx =

\int 
| T\theta +\xi (x) - T\theta (x)| dp(x) \leq L(\theta , | \xi | )| \xi | 2.

Thus we have the following estimation:

(C.5)

\int 
| \nabla \^\psi \theta +\xi  - \nabla \^\psi \theta | 2\rho \theta 0 dx \leq L(\theta , | \xi | )| \xi | 2.

Now let us consider J(\theta + \xi ) - J(\theta ):

J(\theta + \xi ) - J(\theta ) = F (\theta + \xi ,\nabla \^\psi \theta +\xi | \theta 0) - F (\theta ,\nabla \^\psi \theta | \theta 0)
= F (\theta + \xi ,\nabla \^\psi \theta +\xi | \theta 0) - F (\theta ,\nabla \^\psi \theta +\xi | \theta 0)\underbrace{}  \underbrace{}  

A

+ F (\theta ,\nabla \^\psi \theta +\xi | \theta 0) - F (\theta ,\nabla \^\psi \theta | \theta 0)\underbrace{}  \underbrace{}  
B

.(C.6)

Now according to Lemma 4.6, F (\cdot ,\nabla \phi | \theta k) \in C1(\Theta ). By the mean value theorem,
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term A can be written as

A = F (\theta +\xi ,\nabla \^\psi \theta +\xi | \theta 0) - F (\theta ,\nabla \^\psi \theta +\xi | \theta 0)=\partial \theta F (\theta +\tau \xi ,\nabla \^\psi \theta +\xi | \theta 0)\xi with \tau \in [0, 1]

= \partial \theta F (\theta ,\nabla \^\psi \theta | \theta 0)T\xi + (\partial \theta F (\theta + \tau \xi ,\nabla \^\psi \theta | \theta 0) - \partial \theta F (\theta ,\nabla \^\psi \theta | \theta 0)\underbrace{}  \underbrace{}  
r1(\theta , \xi )

)T\xi 

+ (\partial \theta F (\theta + \tau \xi ,\nabla \^\psi \theta +\xi | \theta 0) - \partial \theta F (\theta + \tau \xi ,\nabla \^\psi \theta | \theta 0)\underbrace{}  \underbrace{}  
r2(\theta , \xi )

)T\xi .

Term B can be computed as

B = F (\theta ,\nabla \^\psi \theta +\xi | \theta 0) - F (\theta ,\nabla \^\psi \theta | \theta 0)

=

\int 
(2(\nabla \^\psi \theta +\xi  - \nabla \^\psi \theta ) \cdot \Xi \theta  - (| \nabla \^\psi \theta +\xi | 2  - | \nabla \^\psi \theta | 2))\rho \theta 0 dx

= 2

\int 
(\nabla \^\psi \theta +\xi  - \nabla \^\psi \theta ) \cdot (\Xi \theta  - \nabla \^\psi \theta )\rho \theta 0 dx - 

\int 
| \nabla \^\psi \theta +\xi  - \nabla \^\psi \theta | 2\rho \theta 0 dx

=  - 
\int 

| \nabla \^\psi \theta +\xi  - \nabla \^\psi \theta | 2\rho \theta 0 dx.

The last equality is due to integration by parts and (C.4).
Now substituting A and B in (C.6) yields

J(\theta + \xi ) - J(\theta ) = \partial \theta F (\theta ,\nabla \^\psi \theta | \theta 0)+ r1(\theta , \xi )
T\xi + r2(\theta , \xi )

T\xi  - \| \nabla \^\psi \theta +\xi  - \nabla \^\psi \theta \| 2L2(\rho \theta 0 )
.

We can estimate
(C.7)\bigm| \bigm| \bigm| J(\theta + \xi ) - J(\theta ) - \partial \theta F (\theta ,\nabla \^\psi \theta | \theta 0)T\xi 

\bigm| \bigm| \bigm| 
| \xi | \leq | r1(\theta , \xi )| +| r2(\theta , \xi )| +

1

| \xi | \| \nabla 
\^\psi \theta +\xi  - \nabla \^\psi \theta \| 2L2(\rho \theta 0 )

.

Now we prove the right-hand side of (C.7) approaches 0 as \xi \rightarrow 0. Since \partial \theta F (\cdot ,\nabla \^\psi \theta | \theta 0) \in 
C1(\Theta ), using continuity, we know lim\xi \rightarrow 0 r1(\theta , \xi ) = 0. For r2(\theta , \xi ), when | \xi | is suffi-
ciently small, we have

| r2(\theta , \xi )| =
\bigm| \bigm| \bigm| \bigm| 
\int 
\partial \theta T\theta +\tau \xi (T

 - 1
\theta 0

(x))T(\nabla \^\psi \theta +\xi (x) - \nabla \^\psi \theta (x))\rho \theta 0(x) dx

\bigm| \bigm| \bigm| \bigm| 

\leq 
\biggl( \int 

\| \partial \theta T\theta +\tau \xi (x)\| 2F dp(x)
\biggr) 1

2
\biggl( \int 

| \nabla \^\psi \theta +\xi  - \nabla \^\psi \theta | 2\rho \theta 0 dx
\biggr) 1

2

\leq 
\sqrt{} 
\| L2(\cdot | \theta )\| L1(p)

\sqrt{} 
L(\theta , | \xi | )| \xi | .

The last inequality is due to (3.2) (when | \xi | is small enough so that | \xi | < r(\theta )) and
(C.5). Using this we are able to show lim\xi \rightarrow 0 r2(\theta , \xi ) = 0. Using (C.5) again, we can

verify 1
| \xi | \| \nabla \^\psi \theta +\xi  - \nabla \^\psi \theta \| 2L2(\rho \theta 0 )

\leq L(\theta , | \xi | )| \xi | \rightarrow 0 as \xi \rightarrow 0. Thus J is differentiable

at \theta and we know \nabla \theta J(\theta ) = \partial \theta F (\theta ,\nabla \^\psi \theta | \theta 0). We complete the proof by applying
(4.15) of Lemma 4.6.

Lemma 4.8. Under assumption (4.11), the optimal solution of (4.8) \theta k+1 satisfies

| \theta k+1  - \theta k| \sim o(1), i.e., lim
h\rightarrow 0+

| \theta k+1  - \theta k| = 0.
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Proof of Lemma 4.8. Recall that the function to be minimized in (4.8) is J(\theta ) =
\widehat W 2

2 (\theta , \theta k) + 2hH(\theta ). If choosing \theta = \theta k in (4.8), we have J(\theta k) = 2hH(\theta k). Thus

J(\theta k+1) \leq J(\theta k) = 2hH(\theta k). Since H(\theta k) \geq 0, this leads to \widehat W 2
2 (\theta k+1, \theta k) \leq 2hH(\theta k).

When h is small enough, | \theta k+1 - \theta k| \leq l - 1(2hH(\theta k)), where l
 - 1 is the inverse function

of l defined on [0, l(r0)]. We know l - 1(0) = 0 and l - 1 is also a continuous and
increasing function. This leads to limh\rightarrow 0+ | \theta k+1 - \theta k| \leq limh\rightarrow 0+ l

 - 1(2hH(\theta k)) = 0.

Appendix D. Proofs for Lemmas 5.7 and 5.8.

Lemma 5.7. The geodesic connecting \rho 0, \rho 1 \in \scrP (M) is described by

(5.14)

\Biggl\{ 
\partial \rho t
\partial t +\nabla \cdot (\rho t\nabla \psi t) = 0,
\partial \psi t

\partial t + 1
2 | \nabla \psi t| 2 = 0,

\rho t| t=0 = \rho 0, \rho t| t=1 = \rho 1.

Using the notation \.\rho t = \partial t\rho t =  - \nabla \cdot (\rho t\nabla \psi t) \in \scrT \rho t\scrP (M), gW ( \.\rho t, \.\rho t) is constant for
0 \leq t \leq 1 and gW ( \.\rho t, \.\rho t) =W 2

2 (\rho 0, \rho 1) for 0 \leq t \leq 1.

Proof. Recall definition (2.5) of Wasserstein metric gW , gW ( \.\rho t, \.\rho t)=
\int 
| \nabla \psi t| 2\rho t dx.

Since \{ \rho t\} is the geodesic on (\scrP (M), gW ), the speed gW (\sigma t, \sigma t) remains constant. To
directly verify this, we compute the time derivative:

d

dt
gW ( \.\rho t, \.\rho t) =

d

dt

\biggl( \int 
| \nabla \psi t| 2\rho t dx

\biggr) 
=

\int 
\partial 

\partial t
| \nabla \psi t| 2\rho t dx+

\int 
| \nabla \psi t| 2\partial t\rho t dx.

Using the first equation in (5.14), we obtain

\int 
| \nabla \psi t| 2\partial t\rho t dx =

\int 
| \nabla \psi t| 2 \cdot ( - \nabla \cdot (\rho t\nabla \psi t)) dx =

\int 
\nabla (| \nabla \psi t| 2) \cdot \nabla \psi t\rho t dx.

Taking the spatial gradient of the second equation in (5.14), we have

\partial t(\nabla \psi t) =  - \nabla 
\biggl( 
1

2
| \nabla \psi t| 2

\biggr) 
.

Then

\int 
\partial 

\partial t
| \nabla \psi t| 2\rho t dx =

\int 
2\partial t(\nabla \psi t) \cdot \nabla \psi t\rho t dx =

\int 
 - \nabla (| \nabla \psi t| 2) \cdot \nabla \psi t\rho t dx.

Adding them together, we verify d
dtg

W ( \.\rho t, \.\rho t) = 0; hence
\int 1

0
gW ( \.\rho t, \.\rho t) dt =W 2

2 (\rho 0, \rho 1).
Thus we know gW ( \.\rho t, \.\rho t) =W 2

2 (\rho 0, \rho 1) for any 0 \leq t \leq 1.

Lemma 5.8. Suppose \{ \rho t\} solves (5.14), and the relative entropy \scrH in (2.8)
has potential V satisfying \nabla 2V \succeq \lambda I. Then we have d

dtg
W (gradW\scrH (\rho t), \.\rho t) \geq 

\lambda W 2
2 (\rho 0, \rho 1), or equivalently d2

dt2\scrH (\rho t) \geq \lambda W 2
2 (\rho 0, \rho 1).

Proof. Let us write

gW (gradW\scrH (\rho t), \.\rho t) =

\int 
\nabla (V +D log \rho t) \cdot \nabla \psi t \rho t dx.

Then

d

dt
gW (gradW\scrH (\rho t), \.\rho t) =

d

dt

\biggl( \int 
\nabla (V +D log \rho t) \cdot \nabla \psi t \rho t dx

\biggr) 

=

\int 
(\nabla \psi T

t \nabla 2V\nabla \psi t +Tr(\nabla 2\psi t\nabla 2\psi t)) \rho t dx.
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The second equality can be carried out by direct calculations. One can check [67] or
[68] for its complete derivation. Using \nabla 2V \succeq \lambda I, we get

d

dt
gW (gradW\scrH (\rho t), \.\rho t) \geq 

\int 
\lambda | \nabla \psi t| 2\rho t dx = \lambda gW ( \.\rho t, \.\rho t) = \lambda W 2

2 (\rho 0, \rho 1).

The last equality is due to Lemma 5.7. By the definition of Wasserstein gradi-

ent (2.7), we have d
dt\scrH (\rho t) = gW (gradW\scrH (\rho t), \.\rho t), and we also proved d2

dt2\scrH (\rho t) \geq 
\lambda W 2

2 (\rho 0, \rho 1).
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