
Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

A first-order computational algorithm for
reaction-diffusion-type equations via primal-dual

hybrid gradient method

Shu Liu (UCLA), Siting Liu (UCLA), Xinzhe Zuo (UCLA),
Stanley Osher (UCLA), Wuchen Li (USC)

shuliu@math.ucla.edu

January 20, 2025

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Table of Contents

Background

Algorithm

Theoretical guarantees

Numerical Experiments

Summary & Future research

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Reaction-diffusion equations

• Time-dependent partial differential equation that models the
density (or concentration) evolution of chemical systems with
the reactions (substances get transformed to each other) and
diffusions (substances get spread over).

• The equation has applications in broad scientific areas.
• Phase-field models (depict the development of microstructures

of multiple materials);
• Evolution of species distribution in ecology system;
• Reaction processes of multiple chemicals;
• Modeling & prediction of crimes;
• And many more.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Reaction-diffusion equations

General formulation of reaction-diffusion equation,

∂u(x , t)

∂t
= −G(aLu(x , t) + bf (u(x , t))), (1)

• defined on Ω ⊂ R2 with initial condition u0 and suitable
boundary condition (Neumann, periodic, etc.).

• G,L are usually non-negative definite, self-adjoint differential
operators, a, b ≥ 0, f (·) is a nonlinear reaction term.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Reaction-diffusion equations
Examples:

• Treat G = Id,L = −∆. Take f (u) = W ′(u) = u3 − u where
W (u) = 1

4
(1− u2)2 is the double-well potential. This is the Allen-Cahn

equation
∂tu = a∆u − b(u3 − u).

• Treat G = −∆,L = −∆. Take f (u) = W ′(u) = u3 − u as well. This is
the Cahn-Hilliard equation

∂tu = −a∆∆u + b∆(u3 − u).

• etc.

Many reaction-diffusion equation has gradient flow structure. Consider the free
energy functional

E(u) =
∫
Ω

∥∇xu(x)∥2 +W (u(x)) dx .

• Allen-Cahn equation is the L2−gradient flow of E(u);
• Cahn-Hilliard equation is the H−1−gradient flow of E(u);
• etc.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Reaction-diffusion equations

Take f (u) = W ′(u) = u3 − u where W (u) = 1
4
(1− u2)2 is the double-well potential.

• Allen-Cahn (AC) equ: G = Id,L = −∆, ∂tu = a∆u − b(u3 − u).

• Cahn-Hilliard (CH) equ: G = −∆,L = −∆, ∂tu = −a∆∆u + b∆(u3 − u).

• etc.

Many reaction-diffusion equation has gradient flow structure. Consider the free energy
functional

E(u) =
∫
Ω
∥∇xu(x)∥2 +W (u(x)) dx .

• Allen-Cahn equation is the L2−gradient flow of E(u);
• Cahn-Hilliard equation is the H−1−gradient flow of E(u);
• etc.

Lh,Gh

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Numerical solution to reaction-diffusion equations

• Solve from Eulerian perspective:

• (Finite difference) [Merriman et al. 1994], [Eyre et al. 1998],
[Guillén-González et al. 2013], [Yang. 2016], [Shen et al.
2018], [Xu, et al. 2019], etc.

• (Finite element) [Zhu et al. 2009], [Fu et al. 2023], etc.
• (Spectral method) [Christlieb et al, 2014], etc.

• Solve from Lagrangian perspective (EnVarA): [Liu et al. 2020], [Liu et al.
2022], [Liu et al. 2022], etc.

• Comprehensive literature (books, benchmark problems, etc.)
[Hundsdorfer et al. 2003], [Church et al. 2019], etc.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Primal-dual hybrid gradients algorithm

The primal-dual hybrid gradient (PDHG) algorithm [Zhu et al.
2008], [Chambolle et al. 2011] is proposed to solve the saddle
point problem,

inf
y
sup
x

f (x , y).

The algorithm uses proximal operators together with an
extrapolation step to update (xk , yk), i.e.,

xn+1 =argmin
x

{
∥x − xn∥2

2τx
− f (x , yn)

}
,

x̃n+1 =xn+1 + ω(xn+1 − xn),

yn+1 =argmin
y

{
∥y − yn∥2

2τy
+ f (x̃n+1, y)

}
.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Saddle point scheme for solving numerical PDEs

Solving numerical PDEs by coupling them with their dual variables
and formulating a min-max saddle point scheme.

• Classical methods
• Conservation Laws: [Liu et al. 2022].
• Reaction-diffusion equations: Our research.
• Hamilton-Jacobi equations: [Meng et al. 2023], etc.

• Machine (deep) learning methods
• Introduce dual variable for the equation. Weak Adversarial

Networks (WAN): [Zang et al. 2019] [Zang et al. 2020], etc.
• Introduce dual variable directly for the residual: [McClenny et

al. 2020], [Anagnostopoulos et al. 2023], etc.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Our goal

Numerical scheme: The implicit finite difference scheme.

Tools to resolve the scheme: PDHG algorithm.

Goal: Resolving the implicit scheme with the PDHG algorithm
+ proof convergence
+ verify the efficiency of the method.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Table of Contents

Background

Algorithm

Theoretical guarantees

Numerical Experiments

Summary & Future research

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Motivation: why do we consider implicit scheme?

• Simplicity;

• Overcomes the Courant–Friedrichs–Lewy (CFL) condition on
the time step size ht in explicit or semi-explicit schemes,
which leads to efficient computation of the steady state of the
reaction-diffusion (RD) equation;

• Usually more stable than the explicit or semi-explicit schemes
in phase field models with small diffusion coefficients and
strong reaction coefficients;

• Preserves energy dissipation;

More discussions in [Xu et al. 2019].

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Table of Contents

Background

Algorithm

Theoretical guarantees

Numerical Experiments

Summary & Future research

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Motivation: why do we consider implicit scheme?

• Simplicity;

• Overcomes the Courant–Friedrichs–Lewy (CFL) condition,
larger time stepsize which leads to efficient computation of
the steady state of the reaction-diffusion (RD) equation;

• Usually more stable than the explicit or semi-explicit schemes
in phase field models with small diffusion coefficients and
strong reaction coefficients;

• Preserves energy dissipation;

More discussions in [Xu et al. 2019].

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Motivation: why PDHG method for resolving the scheme?

• A first-order, easy-to-implement optimization algorithm with
tunable hyperparameters;

• Does not require extra effort to compute the inverse of the
Jacobian matrix;

• Convergence rate of the method is independent of grid
resolution;

• Applicable to various types of numerical schemes with high
flexibility.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Derivation of the algorithm

We solve (1) on [0,T], we divide time interval into Nt subintervals,
Suppose Ω is divided into Nx × Nx grids. The implicit scheme

Ut+1 − Ut

ht
= −Gh(aLhU

t+1 + bf (Ut+1)),

with t = 1, . . . ,Nt with U0 given.

This implicit scheme is equivalent to

F (U) = 0,

where U = [U⊤
1 , . . . ,U⊤

Nt
]⊤ ∈ RNtN2

x .

F (U) = DU + htGh(aLhU + bf (U))− V .

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

F (U) = DU + htGh(aLhU + bf (U))− V .

Here D = DNt ⊗ Ix , where Ix denotes the identity matrix on RN2
x ,

D =

1
−1 1

−1 1
. . .

. . .

−1 1

 .

On the other hand,Gh = It ⊗ Gh; Lh = It ⊗ Lh, with INt as the
identity matrix on RNt .
f (U) = f ((U1⊤, . . . ,UNt⊤)⊤) = (. . . , f (Ut

ij), . . .)
⊤. Constant

vector V depends on both the initial condition and the boundary
condition.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

To solve the implicit scheme, motivated by the treatment in [Zuo
et al. 2023], it suffices to minimize

min
U∈RNtN

2
x

1

2ϵ
∥F (U)∥2.

Since 1
2ϵ∥ · ∥

2 can be represented by using Legendre transform,

1

2ϵ
∥ · ∥2 = sup

p
(p, ·)− ϵ

2
∥p∥2,

the original equation yields

min
U∈RNtN

2
x

max
Q∈RNtN

2
x

L(Q,U) ≜ (Q,F (U))− ϵ

2
∥Q∥2.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

One can then bring the aforementioned PDHG algorithm to deal
with this min-max saddle point problem.

Qk+1 =
1

1 + ϵτP
(Qk + τPF (Uk));

Q̃k+1 = Qk+1 + ω(Qk+1 − Qk);

Uk+1 = Uk − τU(DF (Uk)
⊤Q̃k+1).

• We replace the original proximal step on U by explicit update.
• Gain: Convenient to implement;
• Loss: The convergence rate might be weaker (but still

guaranteed to converge).

• Equilibrium of the PDHG method is (U∗, 0), with F (U∗) = 0.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

One can then bring the aforementioned PDHG algorithm to deal
with this min-max saddle point problem.

Qk+1 =
1

1 + ϵτP
(Qk + τPF (Uk));

Q̃k+1 = Qk+1 + ω(Qk+1 − Qk);

Uk+1 = Uk − τU(DF (Uk)
⊤Q̃k+1).

• We replace the original proximal step on U by explicit update.
• Gain: Convenient to implement;
• Loss: The convergence rate might be weaker (but still

guaranteed to converge).

• Equilibrium of the PDHG method is (U∗, 0), with F (U∗) = 0.

F (U) ≜ DU + htGh(aLhU + bf (U))− Const vector = 0.

M ≜ D + ahtGhLh + bhtGhJf

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

However, the significant conditional number of F (·) (even for linear
case) may undermine the convergence of our method.

We need to precondition F (·).

Decompose F (·) as

F (U) = DU + htGh(aLhU + bf (U))− V

= (D + ahtGhLh)U + bhtGh(f (U) + Jf (U − U) + R(U))− V .

= (D + ahtGhLh + bhtGhJf)U + bhtGhR(U)− (bhtGh(f (U)− JfU)− V)

= MU + bhtGhR(U)− Ṽ .

• U is usually treated as a certain steady state of the reaction-diffusion
equation.

• Jf is the Jacobian (or certain constant approximation of the Jacobian) of
f at U, R(·) is the remainder term. Df (U) ≈ Jf = cI , (c ≥ 0)

• Ṽ is a constant vector.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

We then precondition F (·) with M−1, i.e., consider

F̂ (·) = M−1F (·),

and apply the PDHG algorithm to F̂ (·).

E.g.

• For Allen-Cahn equation, Gh = I , Lh = ∆h, and U = ±1,

Jf = Df (U) = W ′′(U) = 2I . M = D + aht It ⊗∆h + 2bht I .

• For Cahn-Hilliard equation, Gh = ∆h, Lh = ∆h, Jf = 2I .

M = D + aht(It ⊗∆h)
2 + 2bht It ⊗∆h.

• Some more general cases in numerical examples.

Both linear systems w.r.t. M can be efficiently solved by

backward substitution + FFT (periodic bc) / DCT (Neumann bc).

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

The PDHG algorithm for F̂ (·):

Qk+1 =
1

1 + ϵτP
(Qk + τP(M

−1F (Uk)));

Q̃k+1 = Qk+1 + ω(Qk+1 − Qk);

Uk+1 = Uk − τU((M
−1DF (Uk))

⊤Q̃k+1).

This is equivalent to the following version of the G-prox PDHG
method [Jacobs et al. 2018] with Pk = M−⊤Qk .

Pk+1 =
1

1 + ϵτP
(Pk + τP((MM⊤)−1F (Vk)));

P̃k+1 = Pk+1 + ω(Pk+1 − Pk);

Vk+1 = Vk − τU(DF (Vk)
⊤P̃k+1).

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

• Termination condition: whenever the norm of the residual
term is less than tolerance tol , i.e., ∥Res(Uk)∥∞ < tol .

We choose to terminate our PDHG iteration whenever the ℓ∞ norm of
the residual term

Res(Uk) =

. . . ,(U t+1
k − U t

k

ht
+ Gh(aLhU

t+1
k + bf (U t+1

k))

)⊤

, . . .

⊤

0≤t≤Nt−1

.

We choose tol = 10−6 for most of our numerical examples.

• Complexity of each iteration of the proposed PDHG method is
O(Nt · N2

x log(Nx)).

Nt from back-substitution, N2
x log(Nx) from FFT.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Table of Contents

Background

Algorithm

Theoretical guarantees

Numerical Experiments

Summary & Future research

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

We mainly address the following three problems:

• Unique existence of the solution to the root-finding problem
F (U) = 0;

• Convergence of ∥F̂ (Ut)∥2 of the PDHG flow (time continuous
version of the PDHG algorithm);

• Convergence of ∥Uk − U∗∥2 of the PDHG algorithm.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Unique existence of the solution to F (U) = 0
Recall the implicit scheme of the reaction-diffusion equation as

Ut+1 − Ut

ht
= −Gh(aLhU

t+1 + bf (Ut+1)),

• Suppose that the reaction term f ∈ C 1(R1) can be decomposed as the
sum

f = V ′ + ϕ,

where V ∈ C 1(R) is convex, and ϕ ∈ C(R) is Lipschitz. Furthermore,
suppose V satisfies

(V ′(x)− V ′(y), x − y) ≥ K |x − y |2,

with K ≥ 0.

• Suppose the spectral decomposition of Gh as

Gh =
[

Q1 Q2

] [Λ
O

][
Q⊤

1

Q⊤
2

]
.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Unique existence of the solution to F (U) = 0

Theorem 1 (Existence and uniqueness of F (U) = 0)

We assume that Gh, Lh used in our finite difference scheme are non-negative
definite and self-adjoint. If the time stepsize ht of the scheme satisfies

λmin

(
Λ−1

ht
+ a Q⊤

1 LhQ1

)
+ bK > b Lip(ϕ), (2)

then the root-finding problem F (U) = 0 admits a unique solution.

E.g. (Similar results on AC, CH equations are also in [Xu et al. 2019].)

• (Allen-Cahn with periodic b.c.) Recall f (x) = W ′(x) = V ′(x) + ϕ(x),

V (x) =

{
1
4
(x2 − 1)2, |x | > 1;

0 |x | ≤ 1.
ϕ(x) =

{
0, |x | > 1;

x3 − x , |x | ≤ 1.

In this case, (2) yields ht <
1
2b
.

• (Cahn-Hilliard with periodic b.c.) (2) yields ht <
a2

b2
.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Convergence of PDHG flow

As we send τU , τP → 0 and (1+ω)τP → γ > 0, the original PDHG
algorithm reduce to a time-continuous dynamic on (P,U)-space.

Q̇t =− ϵQt + F̂ (Ut),

U̇t =− DF̂ (Ut)
⊤(Qt + γQ̇t).

By analyzing the Lyapunov functional

I(Ut ,Pt) =
1

2
∥F̂ (Ut)∥2 +

µ

2
∥Qt∥2,

we are able to prove the convergence of ∥F̂ (Ut)∥ as long as

σ = inf
U∈RN2

x

{σmin(DF̂ (U))} > 0; σ = sup
U∈RN2

x

{σmax(DF̂ (U))} < ∞.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Consider the following assumptions:
• (A) a, b are non-negative;

• (B) The reaction term f (·) is Lipschitz;
• (C) Lh ⪰ O,Gh ⪰ O are self-adjoint, and commute, i.e., GhLh = LhGh;

• (D) Jf is a constant diagonal matrix cI with c ≥ 0.

Theorem 2 (Convergence of PDHG flow (general RD equation))

Suppose the conditions (A), (B), (C), (D) hold. Pick ht and T = Ntht with

bTLip(R)ζa,b,c (ht) < 1.

Then there exists a unique root of F̂ (U) = 0. Furthermore, denote θ =
bTLip(R)ζa,b,c(ht) < 1; and set ϵ = κ− 1

2
and γ = 1

κ
− 1

2κ2 ; then

∥F̂ (Ut)∥ ≤ exp

(
−

5

32
·
(1− θ)3

1 + θ
t

)√
∥F̂ (U0)∥2 + (1 + θ)∥Q0∥2.

Here, κ =
σ

σ
, ζa,b,c (ht) = max

1≤k≤N2
x

{
λk (Gh)

1 + ht(aλk (Gh)λk (Lh) + bcλk (Gh))

}
.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Theorem 3 (Convergence of PDHG flow (AC/CH-type equation))

Suppose (A), (B), (C), (D) hold, We pick T = Ntht (Nt ∈ N+) such that

• (Allen-Cahn type, Gh = I , Lh is self-adjoint, non-negative definite)

T <
1

bLip(R)
, or ht <

1

bLip(R)
and Nt ≤

⌊ 1

bLip(R)ht

⌋
.

Denote θ̃ = bLip(R)T < 1;

• (Cahn-Hilliard type, Gh = Lh are self-adjoint, and non-negative definite)

T <
2
√
aht + bcht

bLip(R)
, or ht <

4a

b2(Lip(R)− c)2+
and Nt ≤

⌊2√a/ht + bc

bLip(R)

⌋
.

Denote θ̃ = bLip(R)T

2
√
aht+bcht

= bLip(R)Nt
√
ht

2
√
a+bc

√
ht

< 1;

Suppose further that ϵ = κ− 1
2
and γ = 1

κ
− 1

2κ2 , then

∥F̂ (Ut)∥ ≤ exp(−
5

32
·
(1− θ̃)3

1 + θ̃
t)

√
∥F̂ (U0)∥2 + (1 + θ̃)∥Q0∥2.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

h
t 10-3

0.08

0.1

0.12

0.14

0.16

0.18

0.2
P

D
H

G
 r

es
id

ua
l c

on
ve

rg
en

ce
 r

at
e

(a) Plot of r̄ vs ht . Fix Nt = 1,

ht = 10−4 · k, 1 ≤ k ≤ 50.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

T=N
t
*0.0005

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

P
D

H
G

 r
es

id
ua

l c
on

ve
rg

en
ce

 r
at

e

(b) Plot of r̄ vs Nt .

Fix ht = 5 × 10−4, 1 ≤ Nt ≤ 20.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T=N
t
*0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

P
D

H
G

 r
es

id
ua

l c
on

ve
rg

en
ce

 r
at

e

(c) Plot of r̄ vs Nt .

Fix ht = 10−2, 1 ≤ Nt ≤ 40.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

h
t

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

P
D

H
G

 r
es

id
ua

l c
on

ve
rg

en
ce

 r
at

e

(d) Plot of r̄ vs ht . Fix Nt = 1,

ht = 5 × 10−4 · k, 1 ≤ k ≤ 40.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

theta = N
t
*sqrt(h

t
)

-0.05

0

0.05

0.1

P
D

H
G

 r
es

id
ua

l c
on

ve
rg

en
ce

 r
at

e

(e) Plot of r̄ vs Nt .
Fix ht = 0.005, 1 ≤ Nt ≤ 22.

Figure: Plot of the convergence rate of the residual term ∥F̂ (Uk)∥ w.r.t. ht ,Nt . (Up)
Allen-Cahn (AC), (Down) Cahn-Hilliard (CH1).

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Convergence of PDHG algorithm

Now we switch to the PDHG algorithm, we prove convergence for
the error ∥Uk − U∗∥2.

Theorem 4 (Convergence of PDHG algorithm (AC/CH-type equ))

Suppose (A), (B), (C), (D) hold. Assume ht , Nt satisfy

• (Allen-Cahn type) Nt · ht <
√
2−1

bLip(R)
. Denote θ = bLip(R)Ntht <

√
2− 1;

• (Cahn-Hilliard type) ht <
4(
√

2−1)2a

b2(Lip(R)−(
√
2−1)c)2+

, Nt ≤
⌊
(
√
2− 1)

2
√

a/ht+bc

bLip(R)

⌋
.

Denote θ = bLip(R)Nt
√
ht

2
√
a+bc

√
ht

<
√
2− 1.

Then, there is unique U∗ with F̂ (U∗) = 0. Choose u ∈ (θ2

1−2θ
, 1) and set

τP =
u(1 − 2θ) − θ2

8
√

u(1 − u)(1 + θ)2 max{u(1 + θ)2, 1 − u}
, τU =

τP

1 − u
, ω =

√
u(1 − u)

τU
, ϵ =

√
u

1 − u
.

Then Uk converges linearly to U∗ with the rate 1− Φ/2 +O(Φ2), i.e.,

∥Uk − U∗∥22 ≤ C0

(
2

Φ +
√

Φ2 + 4

)k+1

, Φ =
(1 − 2θ)2

8(1 + θ)2
·

(
1 − θ2

1−2θ
· 1

u

)2

max{(1 + θ)2, (1 − u)/u}
.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Convergence of PDHG algorithm (simplified version)

Now we switch to the PDHG algorithm, we prove convergence for
the error ∥Uk − U∗∥2.

Theorem

Suppose f (·) is Lipschitz, R(U) = f (U) − (f (U) − Jf (U − U)); LhGh = GhLh.
Assume ht , Nt satisfy

• (AC type Gh = I) Nt · ht <
√
2−1

bLip(R)
;

• (CH type Lh = Gh) ht <
4(
√
2−1)2a

b2(Lip(R)−(
√
2−1)c)2+

, Nt ≤
⌊
(
√
2− 1)

2
√

a/ht+bc

bLip(R)

⌋
.

Then, there exists a unique solution U∗ to F (U) = 0.
We can pick suitable hyperparameters τP , τU , ω, ϵ s.t. Uk converges linearly to U∗,

∥Uk − U∗∥22 ≤ Constant ·
(

2

γ +
√

γ2 + 4

)k+1

,

where γ > 0 is independent of the space discretization.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

40 60 80 100 120 140 160 180 200 220 240 260

N
x

50

100

150

200

250

300

350

400

450

Ite
ra

tio
ns

 n
ee

de
d

fo
r

co
nv

er
ge

nc
e

Iterations needed for convergence vs N
x

6th Order
VarCoeff
Cahn-Hilliard
Allen-Cahn

Figure: Relation between the number of iterations needed for convergence and space
discretization Nx . We verify on four different equations with
Nx = 50, 100, 150, 200, 250. We set ϵ0 = 0.01 for Allen-Cahn equation and ϵ0 = 0.1
for Cahn-Hilliard equation.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

0 50 100 150 200 250 300 350 400

Iteration number

-20

-15

-10

-5

0

5

10

15

lo
g(

||U
k -

 U
*||2 L

2
)

(a) ϵ0 = 1.0.

0 50 100 150 200 250 300 350 400

Iteration number

-30

-25

-20

-15

-10

-5

0

5

10

lo
g(

||U
k -

 U
*||2 L

2
)

(b) ϵ0 = 0.1.

0 50 100 150 200 250 300 350 400

Iteration number

-60

-50

-40

-30

-20

-10

0

10

lo
g(

||U
k -

 U
*||2 L

2
)

(c) ϵ0 = 0.01.

0 50 100 150 200 250 300 350 400 450

Iteration number

-50

-40

-30

-20

-10

0

10

lo
g(

||U
k -

 U
*||2 L

2
)

(d) ϵ = 10.

0 50 100 150 200 250 300 350 400 450 500

Iteration number

-30

-25

-20

-15

-10

-5

0

5

10

lo
g(

||U
k -

 U
*||2 L

2
)

(e) ϵ = 1.0.

0 50 100 150 200 250 300 350 400 450 500

Iteration number

-25

-20

-15

-10

-5

0

5

lo
g(

||U
k -

 U
*||2 L

2
)

(f) ϵ = 0.1.

Figure: Plot of log ∥Uk − U∗∥2 vs iteration k when using hyperparameters specified in
the next table to solve Allen-Cahn (AC) (upper figures, 1 ≤ k ≤ 400) and
Cahn-Hilliard (CH1) (down figures, 1 ≤ k ≤ 500) equations with different ϵ0 on
128× 128 grid.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Theoretical convergence rate Φ/2 vs actual convergence rate of ∥Uk − U∗∥22. The
constraints in the parentheses in the columns of ht ,Nt , and u are derived from the
conditions in Theorem 4. The actual rate r is solved from the linear regression model
r · k + b given the numerical data {k, log(∥Uk+1 − U∗∥2/∥Uk − U∗∥2)}.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Allen-Cahn equation

∂u

∂t
= ϵ0∆u − 1

ϵ0
W ′(u), on [0, 0.5]2 × [0,T], u(x , 0) = u0(x). (AC)

We set ϵ0 = 0.01. We set the initial condition as u0 = 2χB(x∗,r) − 1 with

x∗ = (0.25, 0.25), r = 0.2. We impose the equation with periodic b.c.

(a) t = 0.0 (b) t = 0.5 (c) t = 1.0 (d) t = 1.5 (e) t = 2.0 (f) t = 2.5

Figure: Numerical solution at different times with initial condition u0 = 2χB − 1.

(a) t = 0.0 (b) t = 0.05 (c) t = 0.1 (d) t = 0.2 (e) t = 0.3 (f) t = 0.4

Figure: Numerical solution at different times with a new initial condition. Notice that
in the last plot, we have almost converged to the equilibrium solution u = −1.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Allen-Cahn equation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

time-implicit scheme solved by PDHG

0 0.2 0.4

0

0.2

0.4 -0.5

0

0.5

IMEX scheme

0 0.2 0.4

0

0.2

0.4 -0.5

0

0.5

1

Benchmark

0 0.2 0.4

0

0.2

0.4 -0.5

0

0.5

0 0.5 1 1.5 2 2.5

Time

0

0.05

0.1

0.15

0.2

0.25

0.3

F
ro

nt
 p

os
iti

on

Newton SOR
PDHG
real front position

Figure: We solve the Allen-Cahn equation with ϵ0 = 0.01. (Left) Comparison between
our method and the IMEX scheme. We use grid size 128× 128. We compute both
schemes with large time stepsize ht = 0.02 and compare with the benchmark solution
solved from the same IMEX scheme with ht = 0.001. Blue curve indicates the L1 error
of the IMEX solution on the coarser time grid; Red curve indicates the L1 error
between the time-implicit solution. (Right) Comparison between the front position of
the numerical solution solved via our PDHG method and the Nonlinear SOR method,
as well as the real front position.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Cahn-Hilliard equation

∂u(x , t)

∂t
= −ϵ20∆∆u(x , t)+∆W ′(u(x , t)), on [0, 2π]2, u(·, 0) = u0. (CH1)

We set ϵ0 = 0.1. We set the initial condition as indicator function of seven

circles. We impose the equation with periodic b.c.

(a) t = 0.0 (b) t = 1.0 (c) t = 5.0 (d) t = 15.0 (e) t = 25.0 (f) t = 30.0

Figure: Numerical solution and log10 Res(Un) plot at different time stages for (CH1).
The residual plots verify the linear convergence of the PDHG method.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Cahn-Hilliard equation
We consider the same Cahn-Hilliard equation (CH2) with random initial

condition and periodic boundary condition.

(a) t = 0.0 (b) t = 0.001 (c) t = 0.003 (d) t = 0.01 (e) t = 1.0

(a) Plot of the residual Res(U) at t = 0.01 (b) Plot of the residual Res(U) at t = 1.0

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

A reaction-diffusion equation with mobility term

∂u

∂t
= a∇ · (σ(x)∇u)− bW ′(u), on [0, 2π]2 × [0,T], u(x , 0) = u0(x).

We choose a = ϵ0, b = 1
ϵ0
. We set ϵ0 = 0.01. The mobility term (variable

coefficient) σ(x , y) = 1 + µ
2
(sin2 x + sin2 y) with µ = 5.0. The initial condition

is u0(x , y) =
1
2
(cos(4x) + cos(4y)). The equation is imposed with periodic

boundary condition.
When we set up the precondition matrix M , we replace the original
Lh = ∇h · (σ∇h) by L̃h = σ∆h where σ denotes the average value of σ over Ω.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

t = 0.0

0 1 2 3 4 5 6
0

1

2

3

4

5

6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t = 0.2

0 1 2 3 4 5 6
0

1

2

3

4

5

6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t = 1.0

0 1 2 3 4 5 6
0

1

2

3

4

5

6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t = 2.4

0 1 2 3 4 5 6
0

1

2

3

4

5

6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t = 3.6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t = 5.0

Figure: Numerical solution of the time-implicit scheme solved via our PDHG method
on a 256× 256 grid at different time stages t = 0.0, 0.2, 1.0, 3.6, 5.0.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

A reaction-diffusion equation with mobility term

∂u

∂t
= a∇ · (σ(x)∇u)− bW ′(u), on [0, 2π]2 × [0,T], u(x , 0) = u0(x).

We choose a = ϵ0, b = 1
ϵ0
. We set ϵ0 = 0.01. The mobility term (variable

coefficient) σ(x , y) = 1 + 5
2
(sin2 x + sin2 y) with µ = 5.0. The initial condition

is u0(x , y) =
1
2
(cos(4x) + cos(4y)). The equation is imposed with periodic

boundary condition.
When we set up the precondition matrix M , we replace the original
Lh = ∇h · (σ∇h) by L̃h = σ∆h where σ denotes the average value of σ over Ω.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

t = 0.0

0 1 2 3 4 5 6
0

1

2

3

4

5

6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t = 0.2

0 1 2 3 4 5 6
0

1

2

3

4

5

6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t = 1.0

0 1 2 3 4 5 6
0

1

2

3

4

5

6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t = 2.4

0 1 2 3 4 5 6
0

1

2

3

4

5

6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t = 3.6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t = 5.0

Figure: Numerical solution of the time-implicit scheme solved via our PDHG method
on a 256× 256 grid at different time stages t = 0.0, 0.2, 1.0, 3.6, 5.0.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

A reaction-diffusion equation with mobility term

0 1 2 3 4 5

time

50

100

150

200

250

300

350

400

F
re

e
en

er
gy

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

R
el

at
iv

e
er

rr
or

 in
 fr

ee
 e

ne
rg

y

Benchmark (ht=1e-4)
Implicit schem solved from PDHG (ht=2*1e-3)
relative error

-5 -4 -3 -2 -1 0 1 2

log(time)

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

lo
g(

F
re

e
en

er
gy

)

Benchmark (ht=1e-4)
Implicit schem solved from PDHG (ht=2*1e-3)

Figure: (Left) Free energy decay (blue) of the implicit scheme (solved by PDHG
method) with ht = 2 · 10−3, and the reference energy decay (red) solved from IMEX
scheme with ht = 10−4. The relative error between them is plotted in orange. (Right)
log− log plots of free energy.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

A 6th order equation
We consider the 6th-order Cahn-Hilliard-type equation depicting pore formation
in functionalized polymers [Gavish et al. 2012].

∂u(x , t)

∂t
= ∆(ϵ20∆−W ′′(u) + ϵ20)(ϵ

2
0∆u −W ′(u)) on [0, 2π]2, u(·, 0) = u0.

Set ϵ = 0.18 with initial condition u0 = 2esin x+sin y−2 + 2.2e− sin x−sin y−2 − 1.

When we set up the precondition matrix M , we replace original

Gh = ∆h(ϵ
2
0∆h − diag(W ′′(U)) + ϵ20I) by G̃h = ∆h(ϵ

2
0∆h −W ′′(ū)I + ϵ20I), where

W ′′(ū) = W ′′(±1) = 2.

(a) t = 0.0 (b) t = 0.1 (c) t = 2.0 (d) t = 20.0

Figure: Numerical solution at different time stages.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Hyperparameter selection
Given hx , ht of the implicit scheme, there are 5 hyperparameters to be

determined, Nt , τU , τP , ω, ϵ. How to choose them properly?

• (Choosing Nt) Suppose we are to solve an equation on [0,Ttotal], we divide the
time interval into M · Nt small intervals, i.e.,

[0,Ttotal] =
M⋃
k=1

Ik =
M⋃
k=1

Nt⋃
j=1

Ik,j

 , where each Ik,j = [(k − 1)T + (j − 1)ht , (k − 1)T + jht].

with T = Ttotal/M, ht = T/Nt .

We then apply our proposed method to each subinterval Ik in order to obtain the

entire numerical solution on [0,Ttotal]. It is usually the most efficient to pick the

hyperparameter Nt ≤ 3.

Figure: Comparison of CPU time (s) with different Nts (All problems are solved on
256× 256 grids).

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Hyperparameter selection

• (Choosing τU , τP) In practice, we pick a larger τU , τP to achieve faster convergence.
The optimal stepsize τP is around 0.9, and the optimal ratio kτ = τP

τU
should be

slightly less than 2.

Figure: Comparing speeds among different ratios kτ = τP
τU

for different equations.

The intuition is that we expect to treat the inner optimization of min
u

max
Q

L̂(U,Q)

w.r.t. the dual variable Q more thoroughly.

• (Choosing ω) We pick ω = 1 in our experiments.

• (Choosing ϵ) We set ϵ around 0.1. The method experiences stronger oscillations

when ϵ approaches 0; The method gets slower when ϵ increases beyond 0.1.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Comparison with classical root-finding algorithms
We compare our PDHG method with three classical root-finding algorithms,

Nonlinear SOR, fixed point, and Newton’s method. We always set

τU = 0.5, τP = 0.95 for our PDHG method. We solve step by step (Nt = 1) in

our PDHG method.

• (Nonlinear SOR) We solve the Allen-Cahn equation (AC) with ϵ0 = 0.1 and
ht = 0.005. We solve the equation on 128× 128 grid.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Physical time

0

5

10

15

20

25

30

35

C
P

U
 ti

m
e(

s)

data1
Accumulated CPU time(PDHG)
data2
Accumulated CPU time(NL SOR)

Figure: Accumulated CPU time comparison between our method (red) and Nonlinear
SOR method (blue) applied to Allen-Cahn equation. The quantile plots are composed
based on 40 independent runs of both algorithms.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

• (Fixed point method) We solve the Cahn-Hilliard equation (CH1) with
ϵ0 = 0.1 and ht = 0.01. We solve the equation on 256× 256 grid.
When applying the fixed point method, we need to solve a linear equation. We apply

the preconditioned conjugate gradient (PCG) method with the same precondition used

in our PDHG algorithm to solve such equations.

0 0.05 0.1 0.15 0.2 0.25

Physical time

0

5

10

15

C
P

U
 ti

m
e(

s)

data1
Accumulated CPU time(PDHG)
data2
Accumulated CPU time(PCG fixed point)

Figure: Accumulated CPU time comparison between our method (red) and PCG-fixed
point iteration (blue). We solve the equation with mobility. These quantile plots are
composed based on 40 independent runs of both algorithms.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

• (Newton’s method [Christlieb et al. 2014]) We solve the 6th order equation
with on 256× 256 grid.
When applying Newton’s method, we need to solve linear equations involving Jacobian

matrix. We apply the preconditioned conjugate gradient (PCG) method with the

precondition matrix suggested in [Christlieb et al. 2014] to solve the linear equations.

1 2 3 4 5 6 7 8 9 10

Physical time 10-4

0

2

4

6

8

10

12

14

C
P

U
 ti

m
e(

s)

data1
Accumulated CPU time(PDHG)
data2
Accumulated CPU time(Newton)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

Physical time

0

20

40

60

80

100

120

140

160

C
P

U
 ti

m
e(

s)

data1
Accumulated CPU time(PDHG)
data2
Accumulated CPU time(Newton)

Figure: Accumulated CPU time comparison between our method (red) and Newton’s
method (blue). Solving the 6th order equation with ht = 0.001 (Left) and ht = 0.005
(Right). These quantile plots are composed based on 40 independent runs of both
algorithms.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Table of Contents

Background

Algorithm

Theoretical guarantees

Numerical Experiments

Summary & Future research

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Summary & Future research

In this research, we

• Apply PDHG algorithm to resolve implicit schemes of
reaction-diffusion equations;

• Provide the convergence guarantee for both the PDHG flow
(time-continuous version) and the PDHG algorithm;

• Justify our theoretical findings via numerical examples; Test
our method on various types of reaction-diffusion equations;

• Verify the proper hyperparameters of our method;

• Compare our method with the classical root-finding
algorithms.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Summary & Future research

Possible future directions

• Can we prove a sharper convergence rate (may need more
sophisticated Lyapunov functional)?

• Better preconditioner M ? time-dependent preconditioner?

• Since we formulate the numerical PDE scheme as an
optimization problem, can we apply parallel computing
techniques to accelerate it? [Lions et al. 2001], [Lederman et
al. 2018].

• Apply the (preconditioned) PDHG method to machine
learning and design a saddle scheme for solving PDEs in
high-dimensional spaces.

Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

More details on our paper:

• Shu Liu, Siting Liu, Stanley Osher, and Wuchen Li. A first-order
computational algorithm for reaction-diffusion type equations via
primal-dual hybrid gradient method. JCP Volume 500, 1 March 2024.
(Methodology & Numerical experiments.)

• Shu Liu, Xinzhe Zuo, Stanley Osher, Wuchen Li. Numerical analysis of a
first-order computational algorithm for reaction-diffusion equations via
the primal-dual hybrid gradient method. arXiv: 2401.14602. (Numerical
analysis & Comparison with classical methods.)

Thank you!

Welcome to any comments & questions.

	Background
	Algorithm
	Theoretical guarantees
	Numerical Experiments
	Summary & Future research

