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Reaction-diffusion equations

• Time-dependent partial differential equation that models the
density (or concentration) evolution of chemical systems with
the reactions (substances get transformed to each other) and
diffusions (substances get spread over).

• The equation has applications in broad scientific areas.
• Phase-field models (depict the development of microstructures

of multiple materials);
• Evolution of species distribution in ecology system;
• Reaction processes of multiple chemicals;
• Modeling & prediction of crimes;
• And many more.
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Reaction-diffusion equations

General formulation of reaction-diffusion equation,

∂u(x , t)

∂t
= −G(aLu(x , t) + bf (u(x , t))), (1)

• defined on Ω ⊂ R2 with initial condition u0 and suitable
boundary condition (Neumann, periodic, etc.).

• G,L are usually non-negative definite, self-adjoint differential
operators, a, b ≥ 0, f (·) is a nonlinear reaction term.
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Reaction-diffusion equations
Examples:

• Treat G = Id,L = −∆. Take f (u) = W ′(u) = u3 − u where
W (u) = 1

4
(1− u2)2 is the double-well potential. This is the Allen-Cahn

equation
∂tu = a∆u − b(u3 − u).

• Treat G = −∆,L = −∆. Take f (u) = W ′(u) = u3 − u as well. This is
the Cahn-Hilliard equation

∂tu = −a∆∆u + b∆(u3 − u).

• etc.

Many reaction-diffusion equation has gradient flow structure. Consider the free
energy functional

E(u) =
∫
Ω

∥∇xu(x)∥2 +W (u(x)) dx .

• Allen-Cahn equation is the L2−gradient flow of E(u);
• Cahn-Hilliard equation is the H−1−gradient flow of E(u);
• etc.
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Reaction-diffusion equations

Take f (u) = W ′(u) = u3 − u where W (u) = 1
4
(1− u2)2 is the double-well potential.

• Allen-Cahn (AC) equ: G = Id,L = −∆, ∂tu = a∆u − b(u3 − u).

• Cahn-Hilliard (CH) equ: G = −∆,L = −∆, ∂tu = −a∆∆u + b∆(u3 − u).

• etc.

Many reaction-diffusion equation has gradient flow structure. Consider the free energy
functional

E(u) =
∫
Ω
∥∇xu(x)∥2 +W (u(x)) dx .

• Allen-Cahn equation is the L2−gradient flow of E(u);
• Cahn-Hilliard equation is the H−1−gradient flow of E(u);
• etc.

Lh,Gh
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Numerical solution to reaction-diffusion equations

• Solve from Eulerian perspective:

• (Finite difference) [Merriman et al. 1994], [Eyre et al. 1998],
[Guillén-González et al. 2013], [Yang. 2016], [Shen et al.
2018], [Xu, et al. 2019], etc.

• (Finite element) [Zhu et al. 2009], [Fu et al. 2023], etc.
• (Spectral method) [Christlieb et al, 2014], etc.

• Solve from Lagrangian perspective (EnVarA): [Liu et al. 2020], [Liu et al.
2022], [Liu et al. 2022], etc.

• Comprehensive literature (books, benchmark problems, etc.)
[Hundsdorfer et al. 2003], [Church et al. 2019], etc.
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Primal-dual hybrid gradients algorithm

The primal-dual hybrid gradient (PDHG) algorithm [Zhu et al.
2008], [Chambolle et al. 2011] is proposed to solve the saddle
point problem,

inf
y
sup
x

f (x , y).

The algorithm uses proximal operators together with an
extrapolation step to update (xk , yk), i.e.,

xn+1 =argmin
x

{
∥x − xn∥2

2τx
− f (x , yn)

}
,

x̃n+1 =xn+1 + ω(xn+1 − xn),

yn+1 =argmin
y

{
∥y − yn∥2

2τy
+ f (x̃n+1, y)

}
.
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Saddle point scheme for solving numerical PDEs

Solving numerical PDEs by coupling them with their dual variables
and formulating a min-max saddle point scheme.

• Classical methods
• Conservation Laws: [Liu et al. 2022].
• Reaction-diffusion equations: Our research.
• Hamilton-Jacobi equations: [Meng et al. 2023], etc.

• Machine (deep) learning methods
• Introduce dual variable for the equation. Weak Adversarial

Networks (WAN): [Zang et al. 2019] [Zang et al. 2020], etc.
• Introduce dual variable directly for the residual: [McClenny et

al. 2020], [Anagnostopoulos et al. 2023], etc.
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Our goal

Numerical scheme: The implicit finite difference scheme.

Tools to resolve the scheme: PDHG algorithm.

Goal: Resolving the implicit scheme with the PDHG algorithm
+ proof convergence
+ verify the efficiency of the method.
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Motivation: why do we consider implicit scheme?

• Simplicity;

• Overcomes the Courant–Friedrichs–Lewy (CFL) condition on
the time step size ht in explicit or semi-explicit schemes,
which leads to efficient computation of the steady state of the
reaction-diffusion (RD) equation;

• Usually more stable than the explicit or semi-explicit schemes
in phase field models with small diffusion coefficients and
strong reaction coefficients;

• Preserves energy dissipation;

More discussions in [Xu et al. 2019].
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Motivation: why do we consider implicit scheme?

• Simplicity;

• Overcomes the Courant–Friedrichs–Lewy (CFL) condition,
larger time stepsize which leads to efficient computation of
the steady state of the reaction-diffusion (RD) equation;

• Usually more stable than the explicit or semi-explicit schemes
in phase field models with small diffusion coefficients and
strong reaction coefficients;

• Preserves energy dissipation;

More discussions in [Xu et al. 2019].
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Motivation: why PDHG method for resolving the scheme?

• A first-order, easy-to-implement optimization algorithm with
tunable hyperparameters;

• Does not require extra effort to compute the inverse of the
Jacobian matrix;

• Convergence rate of the method is independent of grid
resolution;

• Applicable to various types of numerical schemes with high
flexibility.
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Derivation of the algorithm

We solve (1) on [0,T ], we divide time interval into Nt subintervals,
Suppose Ω is divided into Nx × Nx grids. The implicit scheme

Ut+1 − Ut

ht
= −Gh(aLhU

t+1 + bf (Ut+1)),

with t = 1, . . . ,Nt with U0 given.

This implicit scheme is equivalent to

F (U) = 0,

where U = [U⊤
1 , . . . ,U⊤

Nt
]⊤ ∈ RNtN2

x .

F (U) = DU + htGh(aLhU + bf (U))− V .
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F (U) = DU + htGh(aLhU + bf (U))− V .

Here D = DNt ⊗ Ix , where Ix denotes the identity matrix on RN2
x ,

D =


1
−1 1

−1 1
. . .

. . .

−1 1

 .

On the other hand,Gh = It ⊗ Gh; Lh = It ⊗ Lh, with INt as the
identity matrix on RNt .
f (U) = f ((U1⊤, . . . ,UNt⊤)⊤) = (. . . , f (Ut

ij), . . . )
⊤. Constant

vector V depends on both the initial condition and the boundary
condition.
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To solve the implicit scheme, motivated by the treatment in [Zuo
et al. 2023], it suffices to minimize

min
U∈RNtN

2
x

1

2ϵ
∥F (U)∥2.

Since 1
2ϵ∥ · ∥

2 can be represented by using Legendre transform,

1

2ϵ
∥ · ∥2 = sup

p
(p, ·)− ϵ

2
∥p∥2,

the original equation yields

min
U∈RNtN

2
x

max
Q∈RNtN

2
x

L(Q,U) ≜ (Q,F (U))− ϵ

2
∥Q∥2.
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One can then bring the aforementioned PDHG algorithm to deal
with this min-max saddle point problem.

Qk+1 =
1

1 + ϵτP
(Qk + τPF (Uk));

Q̃k+1 = Qk+1 + ω(Qk+1 − Qk);

Uk+1 = Uk − τU(DF (Uk)
⊤Q̃k+1).

• We replace the original proximal step on U by explicit update.
• Gain: Convenient to implement;
• Loss: The convergence rate might be weaker (but still

guaranteed to converge).

• Equilibrium of the PDHG method is (U∗, 0), with F (U∗) = 0.
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One can then bring the aforementioned PDHG algorithm to deal
with this min-max saddle point problem.

Qk+1 =
1

1 + ϵτP
(Qk + τPF (Uk));

Q̃k+1 = Qk+1 + ω(Qk+1 − Qk);

Uk+1 = Uk − τU(DF (Uk)
⊤Q̃k+1).

• We replace the original proximal step on U by explicit update.
• Gain: Convenient to implement;
• Loss: The convergence rate might be weaker (but still

guaranteed to converge).

• Equilibrium of the PDHG method is (U∗, 0), with F (U∗) = 0.

F (U) ≜ DU + htGh(aLhU + bf (U))− Const vector = 0.

M ≜ D + ahtGhLh + bhtGhJf
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However, the significant conditional number of F (·) (even for linear
case) may undermine the convergence of our method.

We need to precondition F (·).

Decompose F (·) as

F (U) = DU + htGh(aLhU + bf (U))− V

= (D + ahtGhLh)U + bhtGh(f (U) + Jf (U − U) + R(U))− V .

= (D + ahtGhLh + bhtGhJf )U + bhtGhR(U)− (bhtGh(f (U)− JfU)− V )

= MU + bhtGhR(U)− Ṽ .

• U is usually treated as a certain steady state of the reaction-diffusion
equation.

• Jf is the Jacobian (or certain constant approximation of the Jacobian) of
f at U, R(·) is the remainder term. Df (U) ≈ Jf = cI , (c ≥ 0)

• Ṽ is a constant vector.
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We then precondition F (·) with M−1, i.e., consider

F̂ (·) = M−1F (·),

and apply the PDHG algorithm to F̂ (·).

E.g.

• For Allen-Cahn equation, Gh = I , Lh = ∆h, and U = ±1,

Jf = Df (U) = W ′′(U) = 2I . M = D + aht It ⊗∆h + 2bht I .

• For Cahn-Hilliard equation, Gh = ∆h, Lh = ∆h, Jf = 2I .

M = D + aht(It ⊗∆h)
2 + 2bht It ⊗∆h.

• Some more general cases in numerical examples.

Both linear systems w.r.t. M can be efficiently solved by

backward substitution + FFT (periodic bc) / DCT (Neumann bc).
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The PDHG algorithm for F̂ (·):

Qk+1 =
1

1 + ϵτP
(Qk + τP(M

−1F (Uk)));

Q̃k+1 = Qk+1 + ω(Qk+1 − Qk);

Uk+1 = Uk − τU((M
−1DF (Uk))

⊤Q̃k+1).

This is equivalent to the following version of the G-prox PDHG
method [Jacobs et al. 2018] with Pk = M−⊤Qk .

Pk+1 =
1

1 + ϵτP
(Pk + τP((MM⊤)−1F (Vk)));

P̃k+1 = Pk+1 + ω(Pk+1 − Pk);

Vk+1 = Vk − τU(DF (Vk)
⊤P̃k+1).
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• Termination condition: whenever the norm of the residual
term is less than tolerance tol , i.e., ∥Res(Uk)∥∞ < tol .

We choose to terminate our PDHG iteration whenever the ℓ∞ norm of
the residual term

Res(Uk) =

. . . ,(U t+1
k − U t

k

ht
+ Gh(aLhU

t+1
k + bf (U t+1

k ))

)⊤

, . . .

⊤

0≤t≤Nt−1

.

We choose tol = 10−6 for most of our numerical examples.

• Complexity of each iteration of the proposed PDHG method is
O(Nt · N2

x log(Nx)).

Nt from back-substitution, N2
x log(Nx) from FFT.
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We mainly address the following three problems:

• Unique existence of the solution to the root-finding problem
F (U) = 0;

• Convergence of ∥F̂ (Ut)∥2 of the PDHG flow (time continuous
version of the PDHG algorithm);

• Convergence of ∥Uk − U∗∥2 of the PDHG algorithm.
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Unique existence of the solution to F (U) = 0
Recall the implicit scheme of the reaction-diffusion equation as

Ut+1 − Ut

ht
= −Gh(aLhU

t+1 + bf (Ut+1)),

• Suppose that the reaction term f ∈ C 1(R1) can be decomposed as the
sum

f = V ′ + ϕ,

where V ∈ C 1(R) is convex, and ϕ ∈ C(R) is Lipschitz. Furthermore,
suppose V satisfies

(V ′(x)− V ′(y), x − y) ≥ K |x − y |2,

with K ≥ 0.

• Suppose the spectral decomposition of Gh as

Gh =
[

Q1 Q2

] [ Λ
O

][
Q⊤

1

Q⊤
2

]
.
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Unique existence of the solution to F (U) = 0

Theorem 1 (Existence and uniqueness of F (U) = 0)

We assume that Gh, Lh used in our finite difference scheme are non-negative
definite and self-adjoint. If the time stepsize ht of the scheme satisfies

λmin

(
Λ−1

ht
+ a Q⊤

1 LhQ1

)
+ bK > b Lip(ϕ), (2)

then the root-finding problem F (U) = 0 admits a unique solution.

E.g. (Similar results on AC, CH equations are also in [Xu et al. 2019].)

• (Allen-Cahn with periodic b.c.) Recall f (x) = W ′(x) = V ′(x) + ϕ(x),

V (x) =

{
1
4
(x2 − 1)2, |x | > 1;

0 |x | ≤ 1.
ϕ(x) =

{
0, |x | > 1;

x3 − x , |x | ≤ 1.

In this case, (2) yields ht <
1
2b
.

• (Cahn-Hilliard with periodic b.c.) (2) yields ht <
a2

b2
.
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Convergence of PDHG flow

As we send τU , τP → 0 and (1+ω)τP → γ > 0, the original PDHG
algorithm reduce to a time-continuous dynamic on (P,U)-space.

Q̇t =− ϵQt + F̂ (Ut),

U̇t =− DF̂ (Ut)
⊤(Qt + γQ̇t).

By analyzing the Lyapunov functional

I(Ut ,Pt) =
1

2
∥F̂ (Ut)∥2 +

µ

2
∥Qt∥2,

we are able to prove the convergence of ∥F̂ (Ut)∥ as long as

σ = inf
U∈RN2

x

{σmin(DF̂ (U))} > 0; σ = sup
U∈RN2

x

{σmax(DF̂ (U))} < ∞.
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Consider the following assumptions:
• (A) a, b are non-negative;

• (B) The reaction term f (·) is Lipschitz;
• (C) Lh ⪰ O,Gh ⪰ O are self-adjoint, and commute, i.e., GhLh = LhGh;

• (D) Jf is a constant diagonal matrix cI with c ≥ 0.

Theorem 2 (Convergence of PDHG flow (general RD equation))

Suppose the conditions (A), (B), (C), (D) hold. Pick ht and T = Ntht with

bTLip(R)ζa,b,c (ht) < 1.

Then there exists a unique root of F̂ (U) = 0. Furthermore, denote θ =
bTLip(R)ζa,b,c(ht) < 1; and set ϵ = κ− 1

2
and γ = 1

κ
− 1

2κ2 ; then

∥F̂ (Ut)∥ ≤ exp

(
−

5

32
·
(1− θ)3

1 + θ
t

)√
∥F̂ (U0)∥2 + (1 + θ)∥Q0∥2.

Here, κ =
σ

σ
, ζa,b,c (ht) = max

1≤k≤N2
x

{
λk (Gh)

1 + ht(aλk (Gh)λk (Lh) + bcλk (Gh))

}
.
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Theorem 3 (Convergence of PDHG flow (AC/CH-type equation))

Suppose (A), (B), (C), (D) hold, We pick T = Ntht (Nt ∈ N+) such that

• (Allen-Cahn type, Gh = I , Lh is self-adjoint, non-negative definite)

T <
1

bLip(R)
, or ht <

1

bLip(R)
and Nt ≤

⌊ 1

bLip(R)ht

⌋
.

Denote θ̃ = bLip(R)T < 1;

• (Cahn-Hilliard type, Gh = Lh are self-adjoint, and non-negative definite)

T <
2
√
aht + bcht

bLip(R)
, or ht <

4a

b2(Lip(R)− c)2+
and Nt ≤

⌊2√a/ht + bc

bLip(R)

⌋
.

Denote θ̃ = bLip(R)T

2
√
aht+bcht

= bLip(R)Nt
√
ht

2
√
a+bc

√
ht

< 1;

Suppose further that ϵ = κ− 1
2
and γ = 1

κ
− 1

2κ2 , then

∥F̂ (Ut)∥ ≤ exp(−
5

32
·
(1− θ̃)3

1 + θ̃
t)

√
∥F̂ (U0)∥2 + (1 + θ̃)∥Q0∥2.
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(a) Plot of r̄ vs ht . Fix Nt = 1,

ht = 10−4 · k, 1 ≤ k ≤ 50.
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(b) Plot of r̄ vs Nt .

Fix ht = 5 × 10−4, 1 ≤ Nt ≤ 20.
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(c) Plot of r̄ vs Nt .

Fix ht = 10−2, 1 ≤ Nt ≤ 40.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

h
t

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

P
D

H
G

 r
es

id
ua

l c
on

ve
rg

en
ce

 r
at

e 

(d) Plot of r̄ vs ht . Fix Nt = 1,

ht = 5 × 10−4 · k, 1 ≤ k ≤ 40.
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(e) Plot of r̄ vs Nt .
Fix ht = 0.005, 1 ≤ Nt ≤ 22.

Figure: Plot of the convergence rate of the residual term ∥F̂ (Uk )∥ w.r.t. ht ,Nt . (Up)
Allen-Cahn (AC), (Down) Cahn-Hilliard (CH1).
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Convergence of PDHG algorithm

Now we switch to the PDHG algorithm, we prove convergence for
the error ∥Uk − U∗∥2.

Theorem 4 (Convergence of PDHG algorithm (AC/CH-type equ))

Suppose (A), (B), (C), (D) hold. Assume ht , Nt satisfy

• (Allen-Cahn type) Nt · ht <
√
2−1

bLip(R)
. Denote θ = bLip(R)Ntht <

√
2− 1;

• (Cahn-Hilliard type) ht <
4(
√

2−1)2a

b2(Lip(R)−(
√
2−1)c)2+

, Nt ≤
⌊
(
√
2− 1)

2
√

a/ht+bc

bLip(R)

⌋
.

Denote θ = bLip(R)Nt
√
ht

2
√
a+bc

√
ht

<
√
2− 1.

Then, there is unique U∗ with F̂ (U∗) = 0. Choose u ∈ ( θ2

1−2θ
, 1) and set

τP =
u(1 − 2θ) − θ2

8
√

u(1 − u)(1 + θ)2 max{u(1 + θ)2, 1 − u}
, τU =

τP

1 − u
, ω =

√
u(1 − u)

τU
, ϵ =

√
u

1 − u
.

Then Uk converges linearly to U∗ with the rate 1− Φ/2 +O(Φ2), i.e.,

∥Uk − U∗∥22 ≤ C0

(
2

Φ +
√

Φ2 + 4

)k+1

, Φ =
(1 − 2θ)2

8(1 + θ)2
·

(
1 − θ2

1−2θ
· 1

u

)2

max{(1 + θ)2, (1 − u)/u}
.
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Convergence of PDHG algorithm (simplified version)

Now we switch to the PDHG algorithm, we prove convergence for
the error ∥Uk − U∗∥2.

Theorem

Suppose f (·) is Lipschitz, R(U) = f (U) − (f (U) − Jf (U − U)); LhGh = GhLh.
Assume ht , Nt satisfy

• (AC type Gh = I ) Nt · ht <
√
2−1

bLip(R)
;

• (CH type Lh = Gh) ht <
4(
√
2−1)2a

b2(Lip(R)−(
√
2−1)c)2+

, Nt ≤
⌊
(
√
2− 1)

2
√

a/ht+bc

bLip(R)

⌋
.

Then, there exists a unique solution U∗ to F (U) = 0.
We can pick suitable hyperparameters τP , τU , ω, ϵ s.t. Uk converges linearly to U∗,

∥Uk − U∗∥22 ≤ Constant ·
(

2

γ +
√

γ2 + 4

)k+1

,

where γ > 0 is independent of the space discretization.
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Figure: Relation between the number of iterations needed for convergence and space
discretization Nx . We verify on four different equations with
Nx = 50, 100, 150, 200, 250. We set ϵ0 = 0.01 for Allen-Cahn equation and ϵ0 = 0.1
for Cahn-Hilliard equation.
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(b) ϵ0 = 0.1.
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(c) ϵ0 = 0.01.
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(d) ϵ = 10.
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(e) ϵ = 1.0.
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(f) ϵ = 0.1.

Figure: Plot of log ∥Uk − U∗∥2 vs iteration k when using hyperparameters specified in
the next table to solve Allen-Cahn (AC) (upper figures, 1 ≤ k ≤ 400) and
Cahn-Hilliard (CH1) (down figures, 1 ≤ k ≤ 500) equations with different ϵ0 on
128× 128 grid.
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Theoretical convergence rate Φ/2 vs actual convergence rate of ∥Uk − U∗∥22. The
constraints in the parentheses in the columns of ht ,Nt , and u are derived from the
conditions in Theorem 4. The actual rate r is solved from the linear regression model
r · k + b given the numerical data {k, log(∥Uk+1 − U∗∥2/∥Uk − U∗∥2)}.



Background Algorithm Theoretical guarantees Numerical Experiments Summary & Future research

Allen-Cahn equation

∂u

∂t
= ϵ0∆u − 1

ϵ0
W ′(u), on [0, 0.5]2 × [0,T ], u(x , 0) = u0(x). (AC)

We set ϵ0 = 0.01. We set the initial condition as u0 = 2χB(x∗,r) − 1 with

x∗ = (0.25, 0.25), r = 0.2. We impose the equation with periodic b.c.

(a) t = 0.0 (b) t = 0.5 (c) t = 1.0 (d) t = 1.5 (e) t = 2.0 (f) t = 2.5

Figure: Numerical solution at different times with initial condition u0 = 2χB − 1.

(a) t = 0.0 (b) t = 0.05 (c) t = 0.1 (d) t = 0.2 (e) t = 0.3 (f) t = 0.4

Figure: Numerical solution at different times with a new initial condition. Notice that
in the last plot, we have almost converged to the equilibrium solution u = −1.
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Allen-Cahn equation
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Figure: We solve the Allen-Cahn equation with ϵ0 = 0.01. (Left) Comparison between
our method and the IMEX scheme. We use grid size 128× 128. We compute both
schemes with large time stepsize ht = 0.02 and compare with the benchmark solution
solved from the same IMEX scheme with ht = 0.001. Blue curve indicates the L1 error
of the IMEX solution on the coarser time grid; Red curve indicates the L1 error
between the time-implicit solution. (Right) Comparison between the front position of
the numerical solution solved via our PDHG method and the Nonlinear SOR method,
as well as the real front position.
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Cahn-Hilliard equation

∂u(x , t)

∂t
= −ϵ20∆∆u(x , t)+∆W ′(u(x , t)), on [0, 2π]2, u(·, 0) = u0. (CH1)

We set ϵ0 = 0.1. We set the initial condition as indicator function of seven

circles. We impose the equation with periodic b.c.

(a) t = 0.0 (b) t = 1.0 (c) t = 5.0 (d) t = 15.0 (e) t = 25.0 (f) t = 30.0

Figure: Numerical solution and log10 Res(Un) plot at different time stages for (CH1).
The residual plots verify the linear convergence of the PDHG method.
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Cahn-Hilliard equation
We consider the same Cahn-Hilliard equation (CH2) with random initial

condition and periodic boundary condition.

(a) t = 0.0 (b) t = 0.001 (c) t = 0.003 (d) t = 0.01 (e) t = 1.0

(a) Plot of the residual Res(U) at t = 0.01 (b) Plot of the residual Res(U) at t = 1.0
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A reaction-diffusion equation with mobility term

∂u

∂t
= a∇ · (σ(x)∇u)− bW ′(u), on [0, 2π]2 × [0,T ], u(x , 0) = u0(x).

We choose a = ϵ0, b = 1
ϵ0
. We set ϵ0 = 0.01. The mobility term (variable

coefficient) σ(x , y) = 1 + µ
2
(sin2 x + sin2 y) with µ = 5.0. The initial condition

is u0(x , y) =
1
2
(cos(4x) + cos(4y)). The equation is imposed with periodic

boundary condition.
When we set up the precondition matrix M , we replace the original
Lh = ∇h · (σ∇h) by L̃h = σ∆h where σ denotes the average value of σ over Ω.
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Figure: Numerical solution of the time-implicit scheme solved via our PDHG method
on a 256× 256 grid at different time stages t = 0.0, 0.2, 1.0, 3.6, 5.0.
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A reaction-diffusion equation with mobility term

∂u

∂t
= a∇ · (σ(x)∇u)− bW ′(u), on [0, 2π]2 × [0,T ], u(x , 0) = u0(x).

We choose a = ϵ0, b = 1
ϵ0
. We set ϵ0 = 0.01. The mobility term (variable

coefficient) σ(x , y) = 1 + 5
2
(sin2 x + sin2 y) with µ = 5.0. The initial condition

is u0(x , y) =
1
2
(cos(4x) + cos(4y)). The equation is imposed with periodic

boundary condition.
When we set up the precondition matrix M , we replace the original
Lh = ∇h · (σ∇h) by L̃h = σ∆h where σ denotes the average value of σ over Ω.
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Figure: Numerical solution of the time-implicit scheme solved via our PDHG method
on a 256× 256 grid at different time stages t = 0.0, 0.2, 1.0, 3.6, 5.0.
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A reaction-diffusion equation with mobility term
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Figure: (Left) Free energy decay (blue) of the implicit scheme (solved by PDHG
method) with ht = 2 · 10−3, and the reference energy decay (red) solved from IMEX
scheme with ht = 10−4. The relative error between them is plotted in orange. (Right)
log− log plots of free energy.
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A 6th order equation
We consider the 6th-order Cahn-Hilliard-type equation depicting pore formation
in functionalized polymers [Gavish et al. 2012].

∂u(x , t)

∂t
= ∆(ϵ20∆−W ′′(u) + ϵ20)(ϵ

2
0∆u −W ′(u)) on [0, 2π]2, u(·, 0) = u0.

Set ϵ = 0.18 with initial condition u0 = 2esin x+sin y−2 + 2.2e− sin x−sin y−2 − 1.

When we set up the precondition matrix M , we replace original

Gh = ∆h(ϵ
2
0∆h − diag(W ′′(U)) + ϵ20I ) by G̃h = ∆h(ϵ

2
0∆h −W ′′(ū)I + ϵ20I ), where

W ′′(ū) = W ′′(±1) = 2.

(a) t = 0.0 (b) t = 0.1 (c) t = 2.0 (d) t = 20.0

Figure: Numerical solution at different time stages.
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Hyperparameter selection
Given hx , ht of the implicit scheme, there are 5 hyperparameters to be

determined, Nt , τU , τP , ω, ϵ. How to choose them properly?

• (Choosing Nt) Suppose we are to solve an equation on [0,Ttotal], we divide the
time interval into M · Nt small intervals, i.e.,

[0,Ttotal] =
M⋃
k=1

Ik =
M⋃
k=1

Nt⋃
j=1

Ik,j

 , where each Ik,j = [(k − 1)T + (j − 1)ht , (k − 1)T + jht ].

with T = Ttotal/M, ht = T/Nt .

We then apply our proposed method to each subinterval Ik in order to obtain the

entire numerical solution on [0,Ttotal]. It is usually the most efficient to pick the

hyperparameter Nt ≤ 3.

Figure: Comparison of CPU time (s) with different Nts (All problems are solved on
256× 256 grids).
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Hyperparameter selection

• (Choosing τU , τP) In practice, we pick a larger τU , τP to achieve faster convergence.
The optimal stepsize τP is around 0.9, and the optimal ratio kτ = τP

τU
should be

slightly less than 2.

Figure: Comparing speeds among different ratios kτ = τP
τU

for different equations.

The intuition is that we expect to treat the inner optimization of min
u

max
Q

L̂(U,Q)

w.r.t. the dual variable Q more thoroughly.

• (Choosing ω) We pick ω = 1 in our experiments.

• (Choosing ϵ) We set ϵ around 0.1. The method experiences stronger oscillations

when ϵ approaches 0; The method gets slower when ϵ increases beyond 0.1.
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Comparison with classical root-finding algorithms
We compare our PDHG method with three classical root-finding algorithms,

Nonlinear SOR, fixed point, and Newton’s method. We always set

τU = 0.5, τP = 0.95 for our PDHG method. We solve step by step (Nt = 1) in

our PDHG method.

• (Nonlinear SOR) We solve the Allen-Cahn equation (AC) with ϵ0 = 0.1 and
ht = 0.005. We solve the equation on 128× 128 grid.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Physical time

0

5

10

15

20

25

30

35

C
P

U
 ti

m
e(

s)

data1
Accumulated CPU time(PDHG)
data2
Accumulated CPU time(NL SOR )

Figure: Accumulated CPU time comparison between our method (red) and Nonlinear
SOR method (blue) applied to Allen-Cahn equation. The quantile plots are composed
based on 40 independent runs of both algorithms.
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• (Fixed point method) We solve the Cahn-Hilliard equation (CH1) with
ϵ0 = 0.1 and ht = 0.01. We solve the equation on 256× 256 grid.
When applying the fixed point method, we need to solve a linear equation. We apply

the preconditioned conjugate gradient (PCG) method with the same precondition used

in our PDHG algorithm to solve such equations.
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Figure: Accumulated CPU time comparison between our method (red) and PCG-fixed
point iteration (blue). We solve the equation with mobility. These quantile plots are
composed based on 40 independent runs of both algorithms.
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• (Newton’s method [Christlieb et al. 2014]) We solve the 6th order equation
with on 256× 256 grid.
When applying Newton’s method, we need to solve linear equations involving Jacobian

matrix. We apply the preconditioned conjugate gradient (PCG) method with the

precondition matrix suggested in [Christlieb et al. 2014] to solve the linear equations.
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Figure: Accumulated CPU time comparison between our method (red) and Newton’s
method (blue). Solving the 6th order equation with ht = 0.001 (Left) and ht = 0.005
(Right). These quantile plots are composed based on 40 independent runs of both
algorithms.
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Summary & Future research

In this research, we

• Apply PDHG algorithm to resolve implicit schemes of
reaction-diffusion equations;

• Provide the convergence guarantee for both the PDHG flow
(time-continuous version) and the PDHG algorithm;

• Justify our theoretical findings via numerical examples; Test
our method on various types of reaction-diffusion equations;

• Verify the proper hyperparameters of our method;

• Compare our method with the classical root-finding
algorithms.
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Summary & Future research

Possible future directions

• Can we prove a sharper convergence rate (may need more
sophisticated Lyapunov functional)?

• Better preconditioner M ? time-dependent preconditioner?

• Since we formulate the numerical PDE scheme as an
optimization problem, can we apply parallel computing
techniques to accelerate it? [Lions et al. 2001], [Lederman et
al. 2018].

• Apply the (preconditioned) PDHG method to machine
learning and design a saddle scheme for solving PDEs in
high-dimensional spaces.
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More details on our paper:

• Shu Liu, Siting Liu, Stanley Osher, and Wuchen Li. A first-order
computational algorithm for reaction-diffusion type equations via
primal-dual hybrid gradient method. JCP Volume 500, 1 March 2024.
(Methodology & Numerical experiments.)

• Shu Liu, Xinzhe Zuo, Stanley Osher, Wuchen Li. Numerical analysis of a
first-order computational algorithm for reaction-diffusion equations via
the primal-dual hybrid gradient method. arXiv: 2401.14602. (Numerical
analysis & Comparison with classical methods.)

Thank you!

Welcome to any comments & questions.
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