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NUMERICAL ANALYSIS OF A FIRST-ORDER
COMPUTATIONAL ALGORITHM FOR REACTION-DIFFUSION
EQUATIONS VIA THE PRIMAL-DUAL HYBRID GRADIENT
METHOD

SHU LIU, XINZHE ZUO, STANLEY OSHER, AND WUCHEN LI

ABSTRACT. A first-order optimization algorithm has been introduced by Liu,
Liu, Osher, and Li [J. Comput. Phys. 500 (2024), 19 pp.] to solve time-
implicit schemes of reaction-diffusion equations. In this research, we conduct
theoretical studies on this first-order algorithm equipped with a quadratic
regularization term. We provide sufficient conditions under which the proposed
algorithm and its time-continuous limit converge exponentially fast to a desired
time-implicit numerical solution. We show both theoretically and numerically
that the convergence rate is independent of the grid size, which makes our
method suitable for large scale problems. The efficiency of our algorithm has
been verified via a series of numerical examples conducted on various types of
reaction-diffusion equations. The choice of optimal hyperparameters as well
as comparisons with some classical root-finding algorithms is also discussed in
the numerical section.

1. INTRODUCTION

Reaction-diffusion equations (RD) are well-known time-dependent partial differ-
ential equations (PDEs). They are originally used to model the density evolution of
chemical systems with local reaction processes in which substances get transformed,
and diffusion processes in which the substances get spread over. Since the same
type of equations describe many systems, the RD equation finds its applications
in broad scientific areas. This includes the study of phase-field models in which
the Allen-Cahn and the Cahn-Hilliard equations [IL3] are used to depict the devel-
opment of microstructures of multiple materials; the research on the evolution of
species distribution in ecology system [39]; the study of the reaction processes of
multiple chemicals [40L42]; and the modeling and prediction of crimes [45].

Time-implicit schemes are often used when solving RD equations numerically.
This is because in simulations, explicit or semi-explicit schemes are often encoun-
tered with Courant—Friedrichs—Lewy (CFL) conditions, under which the time step
size is restricted to be very small. Conversely, employing time-implicit schemes al-
lows for the use of larger time step sizes, leading to a more efficient computation of
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the equilibrium state in RD equations. Moreover, computing RD equations with a
weak diffusion and a strong reaction term is of great interest to the computational
math community. The performance of explicit and semi-implicit schemes could
be unstable under these circumstances. However, it has been shown that implicit
schemes still work very well on these models [35/(50]. In addition, time-implicit
schemes are also known to be energy-stable [50].

In a recent work [35], the primal-dual hybrid gradient (PDHG) algorithm, which
is an easy-to-implement optimization algorithm, has been used for computing the
time-implicit solution of RD equations. The PDHG algorithm (0] is a first-order
optimization algorithm with tunable hyperparameters. Notably, it does not re-
quire computing the inverse of the Jacobian matrix in the time-implicit scheme.
It converges robustly regardless of the choice of the initial value, which is a key
distinction from many classical methods, such as Newton’s methods. This property
makes the PDHG algorithm easy to implement and computationally efficient for
solving nonlinear equations. Another motivating feature of the PDHG method is
that it allows for the design of customized preconditioning matrices based on the
structure of the specific RD equation, resulting in a notable grid-size-independent
convergence rate throughout the algorithm.

Nevertheless, the prototype PDHG algorithm presented in [35] faces theoretical
and practical challenges. The time-implicit scheme results in a nonlinear equation,
and the PDHG algorithm introduces nonlinear coupling in both the primal and
dual variables. In addition, there is a lack of convergence analysis for the proposed
PDHG algorithm. Furthermore, the nonlinearity inherent in RD equations poses
a challenge in resolving the optimal choice of hyperparameters. In this paper,
we provide the convergence study of the PDHG algorithm for computing the time-
implicit scheme of RD equations. We also present a series of numerical experiments
on the choices of hyperparameters.

Let us consider the general form of the RD equation on a region  C R? with
prescribed boundary (e.g., periodic, Neumann, or Dirichlet) and initial conditions.

ou(x,t
(1.1) % = —G(aLlu(z,t) + bf (u(z,t))), €Q, u(-0)=m1up().

Here we assume £, G are self-adjoint, nonnegative definite linear operators. f(-) is
the reaction term (usually nonlinear). a > 0 is the diffusion coefficient. And b > 0
is the reaction coefficient. To compute the numerical solution of (IIl), we adopt
the following time-implicit scheme with a time step size hy > 0 and solve for the

numerical solution on N; intervals:

uttl — ot
(1.2) — = —G(aluT +bf(u')), 0<t< N, —1.
t
Assume that at each time step, the numerical solution u! belongs to a certain
Hilbert space X’ with an inner product (-, -). Let us denote u=[u,... ,uf, ..., u™*]"
€ xXNt. Define the function F(-) : XNt — XNt as
(1.3) Flu) =[...,u™ —u! + hGalu!™ +bf(utt1)), .. -}ngth,fr

Then, solving the time-implicit scheme ([2) is equivalent to obtaining the root of
the problem F(u) = 0.
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We now reformulate the time-implicit scheme (2] as an inf-sup problem with
a tunable parameter €;0 following the treatment in [50]

€
1.4 inf L F(w) = 5 lplEw.
(1.4) ,Jnf pzlfvl?w (p, F(u)) 5 P[5~

Here we write p = [p1,...,pt,--.,pn,] € XNt. Compared with the saddle point
scheme considered in [35], a quadratic regularization term is introduced in ([4) to
enhance the performance of the proposed algorithm both theoretically and numer-
ically. It is not hard to verify that (4] is equivalent to the residue-minimizing
problem iI&f 2| F(u)||% ~, , and we further point out that the saddle point of this

inf-sup problem (4)) exists and solves F(u) = 0 whenever the root-finding problem
admits a unique solution.

As demonstrated in [35], we deal with the inf-sup saddle problem by applying
the primal-dual hybrid gradients (PDHG) algorithm [7,[54]. We further substitute
the proximal step of variable w with an explicit update to obtain

p'n,+1 = (pn + Tpf(un)) )

1+erp
i)n-',-l :pn+1 + W(pn_;,_l - pn)’
Up+1 =Up — TUD]:(un)*ﬁnJrl'

(1.5)

Here w > 0 is the extrapolation coefficient, and 7p, 7y > 0 are PDHG step sizes.
DF(u) is a linear operator on X'N¢, which denotes the Fréchet derivative of F(-) at
u. DF(u)* is the adjoint operator of DF(u) on X™t. It is not hard to verify that
the equilibrium state of PDHG scheme (L)) is the desired (w.,0) with F(u,) =0
whenever DF (u)* is invertible for arbitrary u € XM,

The PDHG algorithm (L3 converges slowly when F(-) possesses a large condi-
tion number. To improve the convergence speed, it is necessary to consider precon-
ditioning F(-). We consider an invertible linear operator 9t : XNt — XNt where
M is extracted from the linear part of F(-). Then we introduce the preconditioned
functional F(u) = M1 F(u). We apply the PDHG algorithm (3] to F(u) = 0 to
obtain

anrl = (pn + TPmil‘F(un))v

1+ erp
ﬁn-{-l :pn+1 + w(pn+1 - pn)7
Up ] =Uy — TUD]-'(un)*(imfl)*f)nH.

(1.6)

The above treatment (L6) will significantly improve the algorithm’s convergence
speed while leaving the equilibrium state invariant.

It is worth noting that the original approach proposed in [35] solves the implicit
scheme ([L3) while preserving the time causality: the algorithm sequentially com-
putes u! at each time step, using the previous solution as the initial condition. In
contrast, our approach generalizes by accumulating multiple time steps into a single
root-finding problem and computing the multi-step solution in a forward manner.
More precisely, we solve F(u;) = 0 for sequential blocks of solutions, where each
block is defined as:

— T,7-Ne+1 i Ny+t i Ne+N 1T N, o
wj = [uf Nt Ve Vet N e e 5 =0,1,2, 0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



Licensed to AMS.

4 S. LIU, X. ZUO, S. OSHER, AND W. LI

When updating from u; to wu;i1, we set u® = u/Ne+Nt a5 the initial condition
in (CZ). Unlike step-by-step update, the new approach preserves time causality
among solution blocks w;, w;j1.

In this paper, we analyze the aforementioned preconditioned PDHG algorithm
(TE) to establish sufficient conditions under which the method is guaranteed to
converge. We remark that there are two types of convergence analysis, which may
cause confusion in this manuscript. One refers to the convergence of the numerical
solution to the real solution as the number of grid points increases; the other one
refers to the convergence of (u,,, p,,) to the equilibrium state of the PDHG algorithm
(LE) as n increases. In this research, we mainly focus on analyzing the second type
of convergence. We now briefly summarize the main contributions:

e (Theoretical aspect) Suppose that the reaction term f(-) is Lipschitz. As-
sume that the discretization of the differential operators Ly, G, is positive-
definite, self-adjoint, and commute. We establish the following theoretical
results for our algorithm.

(1) We study the PDHG flow ([B.3), which is the time-continuous limit
of I6) as 7y, 7p — 0,(1 + w)Tp — v > 0. We give conditions
on hy, Ny under which we can pick «, e such that the residual term
exponentially decays to 0. The convergence results for general RD
equations are discussed in Theorem [B] and Theorem [ We establish
convergence rates that are independent of the grid-size IV, for both
Allen-Cahn type and Cahn-Hilliard type equations in Corollary [Z.1}

(2) We analyze the convergence speed of the PDHG method (216 in The-
orem [fl We show that under certain conditions of h;, Ny, we are able
to select suitable hyperparameters 7y, 7p, w, € that guarantee the ex-
ponential convergence of the Lo error term. We establish convergence
rates that are independent of the grid-size N, for both Allen-Cahn
type and Cahn-Hilliard type equations in Corollary [B11

e (Numerical aspect) In sections and [B.3] we justify our theoretical re-
sults stated above. In section 1] we demonstrate the effectiveness of our
algorithm on different RD equations, including the standard Allen-Cahn
and Cahn-Hilliard equations, as well as equations with variable mobility
terms or higher-order diffusion terms whose linear operator .# (cf. ([213))
cannot be directly inverted. In section [L.T.5] we validate that the conver-
gence rate of our method is independent of the grid size N,. In section
A3 we investigate the optimal or at least near-optimal hyperparameters
of our algorithm for achieving efficient performance. We demonstrate the
efficiency of our method by comparing it with some of the classical methods
in section 4] and section

There exist plenty of references regarding the numerical schemes for RD equa-
tions, which include studies on finite difference methods [6}11115]24]25]29]38, 43
44,50,[52], and finite element methods [19]20]25]B1H34,[63]. A series of bench-
mark problems [12,[27] has also been introduced to verify the effectiveness of the
proposed methods. Recently, machine learning or deep learning algorithms such
as deep-learning-based backward stochastic differential equations (BSDE) [2223],
physics-informed neural networks (PINNs) [41L491[5T], and Gaussian processes [10]
have also been applied to deal with various types of nonlinear equations including
the RD equations.
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The primal-dual hybrid gradients (PDHG) method was first introduced in [7]
54] to deal with constrained optimization problems arising in image processing.
This method later finds its applications in various branches such as nonsmooth
PDE-constrained optimization [13], Magnetic resonance imaging (MRI) [48], large-
scale optimization problems including image denoising and optimal transport [26],
computing gradient flows in Wasserstein-like transport metric spaces [4,[5,[19], as
well as design fast optimization algorithms [56], etc.

In [I6], the authors introduce damping terms to the wave equation to achieve
faster stabilization, which resembles the time-continuous limit (the PDHG flow)
B3) of our proposed algorithm. However, [16] focuses on the linear case while our
research deals with nonlinear RD equations. In recent work [9], the authors conduct
certain transformations to enhance the convergence of a saddle point algorithm.
Although the transformed algorithm shares similarities with our method, the target
functionals considered in both researches are distinct. In [8], the authors apply the
splitting method to propose an accelerating algorithm for the root-finding problem
A(z) = 0, where A can be decomposed as the sum of the gradient function and
the skew-symmetric operator. In contrast, our proposed method deals with a time-
dependent root-finding problem, which generally cannot be cast into the settings of
[8]. We refer our readers to [35] for more detailed discussions on related references.

Our research is inspired by [36] in which the authors apply the PDHG algorithm
to compute time-implicit conservation laws. Our former research [35] mainly focuses
on the conceptual and experimental aspects of the PDHG method applied to RD
equations. In addition, the primal-dual method also finds its application in the
computation of Hamilton-Jacobi equations [37]. The aforementioned works [35H37]
do not address the convergence speed of the PDHG algorithm. In this work, we
establish the convergence guarantee for the nonlinearly coupled primal-dual system.
Moreover, we prove a convergence property of our method, where the convergence
rate is independent of the space grid size.

This paper is organized as follows. In section 2] we provide a detailed derivation
of our algorithm applied to RD equations. In section [B.I] we establish the existence
and uniqueness result regarding the time-implicit scheme of the RD equation. In
section [3.2] we focus on the PDHG flow, which is the time-continuous limit of the
proposed algorithm. We first establish convergence results for the general root-
finding problem and then apply our theory to the time-implicit schemes of RD
equations. In section B.3] we prove exponential convergence of our algorithm. We
also investigate necessary conditions that guarantee such convergence. In section
M, we demonstrate the effectiveness of our method on different types of RD equa-
tions and make comprehensive comparisons with the IMEX scheme as well as some
classical root-finding algorithms.

2. DERIVATION OF THE METHOD

In this section, we give a detailed derivation of the PDHG method when applied
to the reaction-diffusion (RD) equation (II]). From now on, we assume that the
domain Q = [0, L]? is a square region.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Suppose we solve (LI on the time interval [0,7]. We divide the time interval
into N; subintervals, and divide the domain 2 into N, x N, grids. Applying time-
implicit finite difference scheme yields

t+1 t
utt —u
(2.1) — = —Gplalpu™ o f(utth)), fort=0,1,...,N;, with u® given.
t
Denote h; = N and h, = . Write Ut € RN=*N= a5 the numerical solution at
the ¢—th time node We denote gh, Ly, as N2 x N2 matrices, which represents the
discretization of the operator £,G w.r.t. the spatlal step size h, and the boundary

condition.

Remark 1 (Allen-Cahn and Cahn-Hilliard equations). For Allen-Cahn equation [I],
we have G = Id, £ = —A; for Cahn-Hilliard equation [3], we have G = —A, L = —A.
And f(-) = /() where W (£) = 1(¢2 — 1)? is the double-well potential for both
equations. We can impose periodic or homogeneous Neumann boundary conditions
for both equations. Furthermore, suppose we apply the central difference scheme to
discretize the Laplace operator A. We obtain A} = Iy, ®Lap,f —i—Lap,f ® Iy, for
periodic boundary condition, and AN =In,® Laph + Laph ® Iy, for Neumann
boundary condition, where ® is the Kronecker product and we define
(2.2)
-2 1 1 -1 1
1 1

Laph h,2 - - - ) Laph h,2

1 1 =2 1 -1

1. PDHG method for preconditioned root-finding problem. In this sec-
tion, we provide a more detailed derivation for our algorithm.

Let us treat X = RN:. We denote U = [ulT, cee uNfT]T € RMNZ as the numer-
ical solution. Ly, G, indicate the discrete approximations of £,G. We formulate
the time-implicit scheme () as a root-finding problem

(2.3) F{U) =0,
with F : RN:NZ s RV:N? defined as
(2.4) FU)=2U 4 h&,(a U + bf(U)) — V.

Here we denote the time difference matrix 2 = Dy, ® I, where I, is the identity
matrix on RNg, and

1
-1 1
(2.5) Dy = -1 1 is an N x N matrix.
-1 1
On the other hand, we define
(2.6) G =1,2Gn, =1L,
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with I; representing the identity matrix on R, The reaction function f(-) acts
element-wisely on vector U. The constant vector V € RNtV z depends on both the
initial condition and the boundary condition of the equation.

0 if u = 0;
We aim to solve F(U) = 0. In [35], an indicator function ¢(u) = 1 “=u
+oo fu#0
is introduced to reformulate the root-finding problem as an optimization problem
(2.7) inf  (F(U)),
UERNtNE

which can be further reduced to an inf-sup saddle problem

(2.8) inf sup  PTF(U).

UE]RNtN% peRNtNg
Inspired by [56], we replace ¢ in ([Z7) by a milder quadratic function o-|| - ||* to
obtain
1
2.9 inf  —||F(U)|?
(29) ]

By introducing the dual variable P € RV, 2, one can reformulate ([2.9) as an inf-sup
problem with a tunable parameter ¢,

(2.10) inf  sup L(UP)2PTFU) - <|P|>
UeRNtNZ PcRNtN2 2
We tackle this saddle point problem by leveraging the primal-dual hybrid gradi-
ent (PDHG) algorithm and obtain

1
Py =——(P, FU,)),
w1 =15 o (Pt 7PE(U)
(2.11) 5

PnJrl :PnJrl + W(PnJrl - Pn)7
Upsr =U, — 7y DF(U,) " Py

When DF(U) is nonsingular for arbitrary U € RVe. 12-, the equilibrium state of the
above discrete dynamic is (U,,0) with F(U,) = 0. As discussed in section [Il a
large condition number of F(-) may significantly slow down the convergence speed
of (2II). To mitigate this, we consider suitable preconditioning of F(:). Let us
decompose F'(U) into its linear part and nonlinear part,

F(U) =2U + h(aZU + bf(U)) — V
(2.12) =(2 + ahi9, U + bhtgh(f(ﬁ) + Jy (U — U) + R(U))-V.

Here we assume U is a certain point in RNz at which we expand f (U) = f(U) +
Jp(U=U)+R(U). We choose matrix J; as an approximation of the Jacobian matrix
Df(U) = diag(..., f'(Uij),...). We denote R(U) £ f(U) — f(U) - J;(U —TU) as
the remainder term.

Remark 2. In practice, we usually choose J;y = D f(u.1) where 1 is the 1—vector,
and u, is one of the stable equilibrium states, i.e. f(u,) = 0. For example, in
Allen-Cahn equation, f(u) = u® — u, then u, = 41, we always have f’(u.) = 2.
Thus, we set Jy = 21.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



Licensed to AMS.

8 S. LIU, X. ZUO, S. OSHER, AND W. LI

By writing
(2.13)
X
-I X
///:.@-Fahtghfh—l-bhtghjf: . . with X=I4+ah.Gy Ly +bhGpJ s,

I X
=bhy @y (f(U) = J;U) =V,
we decompose F(U) as AU + bhi%,R(U) — w. It is beneficial to consider the
preconditioned function
(2.14) FU)=.#4"F{U)=U + 4 (bh%RU)) — @ “"%* U +5(U).
We discuss the sufficient condition under which .# is invertible in Remark [3

Remark 3 (Invertibility of .#). Suppose a,b > 0, Gp,, L}, are self-adjoint, non-
negative definite, and commute. Assume Jy = ¢l with ¢ > 0. Then . is invertible
for any h; > 0. To prove this, it suffices to show that each X is invertible. By similar
arguments of the proof in Lemma [[3] it is not hard to verify that X is equivalent
to I + ahyAg, Az, + bchiAg, , which is invertible for h; > 0. Here Ag,,Ar, are
diagonal matrices equivalent to Gy, Lp,.

The corresponding root-finding problem F (U) = 0 is equivalent to the original
problem (Z3)) whenever .# is invertible.
We now apply ([2I1)) to the inf-sup saddle problem with respect to F(-)

. ~ -~ €
(2.15) inf  sup L(U,Q) = QTF(U) - 5[l
UecRNtNz QE]RNtNg

And our PDHG method with implicit update in Q and explicit update in U yields
= F(Uy)));
Qry1 [ (Qr +7p(F(Ur)))s

(2.16) Qi1 = Qrs1 +w(Qpi1 — Qp);
Uri1 = Up — 7(DF(Ur) " Qrpr)-

We then iterate (218]) so that {Uy} approaches the desired root U,. We terminate
the iteration whenever the /> norm of the residual term

(2.17)  Res(Up) = F(Ug)/h

T T

UZ—H - u)lsc t+1 t+1
. <—h +Gn(alpu,™ +0f(uy ))> Yo
t

]O<t<Nt1

is less than a certain tolerance tol, i.e., |Res(Ug)||c < tol.

2.2. Complexity of the algorithm. We apply the Fast Fourier Transform (FFT)
[T4,[46] to evaluate the multiplication of L, Gy, for periodic boundary conditions.
Furthermore, the Discrete Cosine Transform (DCT) [47] can be utilized to handle
the no-flux or more general Neumann boundary conditions. We refer interested
readers to [35] for more details. Thus, computing F(U) requires O(N;N21log N,)
steps of operations. Furthermore, since .# is block lower triangular, applying
back substitution together with FFT/DCT to solve the linear system involving .4

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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requires O(N; N2 log N,.) steps of operations. Thus, the complexity at each iteration
of our algorithm equals O(N; N2 log(N,)).

2.3. Computing with time causality. As mentioned in section [I} time causal-
ity can be incorporated into the numerical scheme by solving sequential blocks of
numerical solutions:

.
; . T . T . T 2 .
UV = | Vet gd Vet g Nt N } e RNaNe 5 =0,1,2,....

More precisely, to compute U7 over the j-th time interval [(j—1)-N;-hy, j- Ny-hy),
the proposed PDHG algorithm is applied to the root-finding problem F(U7) = 0,
with ug = u=DNetNe That is, the initial value is set as the final state from the
previous block U7,

From a practical perspective, increasing N; leads to higher memory consumption.
From a theoretical point of view, as justified in Corollaries [[.1] and Bl fixing the
time step size h; while selecting a large Ny may result in an ill-conditioned root-
finding problem, posing challenges to the convergence of the method. In practice,
choosing a moderate N; (generally not exceeding 5) mitigates these issues and
ensures the efficient performance of the algorithm. Further discussions regarding
hyperparameter selections are provided in section [£3l

A standard choice of the initial values (U, Qq) for the PDHG algorithm (Z10])
upon solving F(U7) = 0 is Uy = ﬁj,QO = 0, where U’ denotes the numerical
solution precomputed using the IMEX scheme with initial condition u(/—1Ne+Ne,
A simpler alternative is to set Uy = U’~!,Q¢ = 0. Both choices are efficient in
practice as long as IV is not too large.

2.4. Relation with G-prox PDHG method. The G-prox primal-dual hybrid
gradients algorithm [26] was recently invented to improve the convergence of opti-
mization and root-finding problems. The algorithm can be formulated as

(2.18)

. 1 ~ 1 _
Pyy1 = argmin {2—||P — Pl - L(Uk,P)} = (Py +1pGIF(Uy));
PeRNtNZ P 1+erp

ﬁk+1 = Pyy1 + w(Pyy1 — Pr);

. 1 o~
Upy1 = argmin {—|U— Uel? + L(U, Pkﬂ)}.
UeRNt N2 TP

Here we define the G-weighted norm as |[v||% = v Gv, and pick G = #Z.#T. In
practice, we substitute the following explicit update of Uy for the implicit update,
(219) Uk+1 = Uk - TUDF(Uk)TﬁkJrl.

Now, we multiply .# T on both sides of ([ZI8) (but with the third line replaced by
(219)) to obtain

1
M Py =

k+1 1+erp
(2.20) M Py = M Pysr + (M Py — MTP);

Upt1 = Ux — uDF(Uy) T (M Pyyr).

(M P+ mptt TVF(Uy));

Licensed to AMS.
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By denoting Q; = .# T P, and noticing that F(U) = . *F(U), [Z20) reduces
exactly to (2.I0). This verifies the equivalence between the G-prox PDHG algorithm
and our proposed method.

3. NUMERICAL ANALYSIS OF THE PROPOSED METHOD

In this section, we study the numerical convergence properties of the proposed
PDHG algorithm. In section[3.1] we prove the unique solvability of the time-implicit
scheme (2)) of RD equations. In section[32] we study the convergence of the time-
continuous limit of the PDHG algorithm. In section B3] we prove the convergence
of the PDHG algorithm.

3.1. Unique solvability of the time-implicit scheme. In this research, we
mainly focus on reaction functions f that belong to the functional space F, where
(3.1)

where V € C'(R) is convex, and ¢ € C(R) is Lipschitz

The space F covers a majority of reaction functions that arise in classical RD
equations such as the Allen-Cahn and the Cahn-Hilliard equations.
Before we present the result, we assume the spectral decomposition of Gp:

(3.2) Gh=1[Q1]Q2] [A O] [gﬂ ;

where A = diag(A1,...,\.) is a diagonal matrix with positive entries A; > -+ >
Ar > 0, r = rank(Gp).

]-"_{fecl(R)

f can be decomposed as f = V' + ¢, }

Theorem 1 (Existence and uniqueness of ([23))). Suppose that G, Ly, used in the
finite difference scheme [21) are self-adjoint and positive semi-definite. Assume
Gn has the spectral decomposition as in B2). We also assume that f € F, such
that the convex function V' satisfies

(V'(2) = V'(y),z —y) = Klz —y/*,
for some K > 0. If the time step size hy in 2] satisfies

A1 )
(33) Auin (h— +a QIEth) +bK > b Lip(6),
t
then the root-finding problem [23) admits a unique solution.
The proof of Theorem [ is deferred to Appendix [A.T]

Remark 4. The condition ([B3]) can be simplified for some specific equations.
e (Allen-Cahn equation with periodic boundary condition) G =1d, £ = —A,
f(z) = 2® —2. We set Gy, = In2, and L), = —Aﬁz =1IyN ® (—Lapﬁx) +
(—Lapﬂ) ® Iy, , where Lapfl is defined in (2:Z). In this case, the condition
B3) yields hy < 5.
e (Cahn-Hilliard equation with periodic boundary condition) G = —A, £ =
—A, f(x) =2® —x. Weset G, = L, = —Af . A sufficient condition for
B3) is hy < Z—;
Similar results regarding both Allen-Cahn and Cahn-Hilliard equations have also
been done in [50]. Theorem [I] applies to general RD equation (). We refer
interested readers to Appendix for more detailed discussions.
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3.2. Lyapunov analysis for the PDHG flow. We are ready to present the
main result of this paper. In subsection B.2.1] we first prove the convergence of the
time-continuous limit of the PDHG algorithm (ZT6) for the general root-finding
problem. In subsection B.2.2] we apply the previous theory to the time-implicit
scheme of RD equations. In subsection B.2.3] we provide numerical justifications
for the theoretical study. To alleviate the notation, we denote || - || as the 2—norm
for both vectors and matrices in the following discussion.

3.2.1. Convergence analysis for the general root-finding problem. Firstly, we estab-
lish the convergence result for a general root-finding problem F(U) = 0 regardless

of the exact form of F(U). Our main results are summarized in Lemma [ and
Theorem 3 N
Recall [216]), we substitute Q41 with

Qrt1 = Qr + (1 +w)(Qrr1 — Qn)

€ ~
=Qr+ (1+w)Tp (—ka + T F(Uk)>

_ (1 _ (1+W)Tp6) Qk + (1+W)Tpﬁ(Uk).

1+erp 14 emp
Then, the PDHG iteration (2I0) can be formulated as
Q=G ___ ¢ Qk + F(Uy);
TP 1+erp 1+erp
(34) Uk+1 — Uy ~o T (14 w)Tpe (14+w)tp ~
Tk Z Yk _ _pR, |- T TPe LT B )
TU (Ur) (( 1+erp )Qk+ 1+erp ( k)>

Suppose we send the step sizes 7y, 7p — 0, and keep w increasing such that (1 +
w)Tp — v > 0. Then the above time-discrete dynamic will converge to the following
time-continuous dynamic of (Uy, Q;) which we denote as the “PDHG flow”.

. Q=—Q+F(U), -
U=-DF(U)"((1 - y)Q +vF(U)).
We introduce two notations that will be commonly used in the following discussion,
(3.6) o= inf {omw(DFU))}= inf {own(l+bhett '9DR(U))},
UERNtNZ UeRNeNZ
(3.7) = sup {amaX(Dﬁ(U))} = sup {omax(I + bhett 7149, DR(U))},
UEeRNtNE UERNtNZ

where opin(A) (0 max(A)) denotes the minimum (maximum) singular value of matrix
A. The condition number is defined by

(3.8) k=7/0.
We consider the following Lyapunov function of (U, Q) associated with a param-
eter p > 0,
L= %
(39) T,(U.Q) = 5 IFW) + Q).

The parameter 4 enables us to establish the exponential decay of Z,,(Us, Q) along
the PDHG flow whenever 0 < ¢ < 7 < co. We have Lemma [2
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Lemma 2 (Exponential decay of Z,,(Us, Q¢)). Suppose that 0 < ¢ <7 < co. We
pick the parameter i > 0 satisfying

(3.10) <

3

SHE
Q| —

Furthermore, we choose v, € > 0 satisfying

(3.11) max{(l—g>2,<l—%>2}<’ye<(1+g>2.

Under the above choices of p, v and e, let (Us, Q1) be the solution to the PDHG
flow BX) with arbitrary initial condition (Uy, Qo). Then we have

2t

Z,(Ut, Qt) < exp (_ max{1, u}

) Z,,(Uo, Qo).

Here we denote

B= min_{p,~.(2)} >0,

z€[a?,57]
with 9p.e(2) = 5(v2 + pe = \/(v2 — pe)? + (u — (1 = 7e)2)?).

We defer the proof of Lemma [ to Appendix [B.Il Lemma [ provides a sharp
convergence rate for Z,(Us, Q¢). However, 3 does not take an explicit form. In
Theorem Bl we relax the bound in Lemma [2] to obtain an explicit convergence rate
for | E(UL)].

Theorem 3 (Exponential decay of the residual Hﬁ(Ut)H) Assume that (U, Qy)
solves [B.A]) with an arbitrary initial position (Uy, Qo). Then, as long as o is bounded
away from 0 and @ is finite, one can always pick suitable parameters -y, € such
that the residual |F(Uy)|| decays exponentially fast to 0. In particular, if we set
e=(1-0)k and v = =2 with |6| < L, then we have

= min{o? ~
IF@le < exp (~0 - wDE - 92 o) IF @I + 22l

The proof is provided in Appendix[B.l We can further improve the convergence
rate by fixing ve = 1 in Theorem [I1] of Appendix Bl

3.2.2. Convergence analysis for our specific root-finding problem [2I4]). In this sec-
tion, we discuss the exponential decay of the PDHG flow (3.) when it is applied
to the time-implicit scheme (2.1]) of the RD equation (LI when the reaction term
f(+) is Lipschitz. The main results of this section are Theorem [f] and Corollary [T11

Before demonstrating our result, we list several conditions regarding equation
(CI) and its numerical scheme (ZI]). These conditions will be used later.

(1) Suppose the coefficients a, b are nonnegative, i.e.,
(A) a>0, b>0.

(2) Assume that
(B) f(+) is Lipschitz with constant Lip(f).

(3) In the numerical scheme (21)) of (Il), suppose
(©)
Ly, Gy, are self-adjoint, nonnegative definite, and commute, i.e., G Ly = L1,Gp,.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(4) Recall J; mentioned in ([ZI2). We assume
(D) J is a constant diagonal matrix cI with ¢ > 0.

Remark 5. We point out that many reaction-diffusion equations do not possess
Lipschitz reaction terms f(-): Double-well polynomial potential in the phase field
model, as well as logarithmic Flory-Huggins potential, does not yield Lipschitz
reaction functions [I828]. However, the Lipschitz assumption can still be applied
if one can prove an a priori estimation on £°° norm of the numerical solution Uy
for all PDHG iteration k. This may serve as our future research topic.

As stated in Theorem Bl we need ¢ > 0 and & < oo in order to establish the

exponential decay of ||F(U)]|. Lemma [ provides a sufficient condition for this to
hold.

Lemma 4. Suppose (A)), (B), (C) hold. When hy < m, we always
have o > 0 and 7 < oco.

We prove Lemmalin Appendix Combining Theorem [B]and Lemma Ml leads
to Theorem [Bl

Theorem 5 (First convergence result of ||1:"\(Ut) ). Consider the RD equation (LI
on [0,T]. Suppose (A), (B) and (C) hold. We apply the PDHG flow [B.E) to
solve the time-implicit scheme (ZTI) with time step size hy < m Suppose

v =212 and e = (1 - 0)k with k = G/a, and |5| < L. Then |F(U)|| converges

PR
exponentially fast to 0.

Remark 6. Tt is worth mentioning that we do not assume condition (B3] of Theorem
[ Then F(U) = 0 might not admit a unique solution, but the exponential decay
of [|[F(Uy)|| is still guaranteed.

Although Theorem [§ guarantees the exponential convergence of ||F(Uy)]|| for
arbitrarily large b and T as long as hy, 7, € are suitably chosen, both the time step
size h; and the convergence rate may depend on the spatial discretization N,. To
get rid of this dependency, we provide sufficient conditions under which ¢ and
o are bounded away from the constants that are independent of N,. Thus, we
achieve a convergence rate that is independent of N,. Recall the remainder term

RU) = f(U) - f(U) — Df(U)(U — U) mentioned in [ZI2). We have Lemma [

Lemma 6. Consider the reaction-diffusion type equation (LIl on [0,T]. Suppose

the conditions (&), (Bl), (C) and (D) hold. Since (Bl requires f to be Lipschitz, so
does R. And we denote its Lipschitz constant as Lip(R). Define

| 6, |
1<k<N2 | 1+ he(arg(Gr) Ak (Lh) + beri(Gr)) |7

where A\, (Gr), A\x(Ly) are the eigenvalues of Gy, Ly which are simultaneously di-
agonalizable by an orthogonal matriz Q. Recall that in 2I4), we have n(U) =
bhytt 14, R(U) — W, then

[ Dn(U)|| < 6T Cap.c(he)Lip(R) .

Ca,b,c(ht) =

And we also have

02 1=bTCapc(he)Lip(R), T <1+ bTCqp.c(he)Lip(R).
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We prove Lemma [ in Appendix [B.2l A direct corollary of Lemma [ and
Theorem B is Theorem [[ which not only guarantees the unique solvability of
F(U) =0, but also establishes exponential convergence for || F(Uy)||.

Theorem 7 (Unique existence of the root and the second convergence result of

||ﬁ(Ut)H) Suppose conditions [B), @), (@) and (D) hold. We pick hy and T =
Nihy (Ny € Ny ) satisfying

(3.12) BT Lip(R)Cape(he) < 1
Then there exists a unique root of F. Furthermore, we denote
0 = bTLip(R)Cap,c(he) < 1.

Suppose we set € = Kk — % and v = % — 2% Then we have

313 1RO <ew (—- B2 ) VIF@I + 0+l

Proof. The unique existence of the root for F(-) is due to Lemma
We now prove the exponential convergence ([B.I3]). According to Lemma [6] by
letting @ = bTLip(R)(ap.c(ht), we obtain
1+0

(3.14) c>1—-6, <146, andthus A<—9

Now recall Theorem [Bl To alleviate our discussion, we choose § = i After setting

the parameters ¢ = Kk — 3 and y== = #, we have
~ 1 1 min{a2 1} =~
F < (3 - =" "7 A 2 2 2
Pl < exp (503~ 50) - ) VIF@oIE + 22l

1 5 1—
<o (-3 >\/IIF Un)12 + (1 + 9)]|Qoll?

2 2 8
)
= _= F( 24 (1 2
o (- U5 ) VIE@o) I+ (14 0ol
where the second inequality is due to (BI4) and the fact that x > 1. O

We can simplify condition ([BI2]) for specific types of RD equations. This is
summarized in Corollary [Z.1]

Corollary 7.1 (N,-independent convergence rate for specific RD equations). Sup-
pose the conditions (&), [B), (C) and (D) hold. We pick T = Nihy (Ny € Ny)
such that
o (Allen-Cahn type, G, = I, Ly, is self-adjoint, nonnegative definite) T <
m, or equivalently, pick hy < m and Ny < \‘WJ' We denote
6 = bLip(R)T < 1.
o (Cahn-Hilliard type, G, = Ly are self-adjoint, and nonnegative definite)

. . 2v/a/htb
T< QX/bgilpiFIgC)ht , or equivalently, pick hy < lﬂ(Lipjﬁ and Ny < {%J

_ bLip(R)T
We denote 0 = m < 1
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Suppose further that e = k — § and v = + — 555, then |F(U)|| convergences to 0
exponentially fast,

5

1 F < —
(315 IF@)] exp< B

: t) VIEWIZ + (1 + 8) Qo2

Proof. Recall that we have 8 = bTLip(R)(yp,c(h:). We prove 6 > 6 under both

cases.
e (Allen-Cahn type) Note that (4 p.c(h:e) = maxk{m} < 1.
Thus,
0 = bTLip(R)Ca,p.e(he) < bTLip(R) = 6.
e (Cahn-Hilliard type) We have

~1
Ca,b,c(ht) = maX { (/\k(lgh) + ht(l)\k(»ch) + htbc) }

1 -1
= max { (/\k(ﬁh) + hiadi(Ly) + htbc> }
1

< ———m—.
o 2\/ aht + bCht
Then

)

_TLip(R) 5
= 2\/ah; + bchy ’
Since 6 < 1 in both cases, we have § < 6 < 1. Applying Theorem [T yields BI13).
Note that (1 9) > (1 0) for 0 <6 < 6 < 1. This implies our result (I5). O

6= bTLlp( )Ca b, c(ht)

3.2.3. Numerical vemﬁcatwn. We apply our algorithm to solve the Allen-Cahn
equation (1) with ¢g = 0.01 on a 64 x 64 grid. We use 7y = 7p = 0.5, w = 1,

= 0.1. At each iteration k, denote Uy as the numerical solution. We define
i = —logyo(IIF(Ues )|/ F(U)|) to be the convergence rate of the residual term
|F(Uy)| at kth iteration. The residual is expected to converge linearly to 0. We
denote by 7 the average convergence rate of the first 500 iterations. By (B.I%]), when
0 is small, the convergence rate is >(1 - 46 + O(62)), which is linear w.r.t. Nyh,

(recall that 6 oc T = N;hy). Such linear relation is verified in the first two figures
of Figure [ In the third figure, we observe fast decay of the average convergence
rate 7 as 6 N:h; keeps increasing. Furthermore, we verify the dependence of the
convergence rate on Nph; via the left plot of Figure @l We also apply our algorithm
to the Cahn-Hilliard equation ([@2)) with g = 0.1 on a 64 x 64 grid. We keep the
hyperparameters the same as in the case of Allen-Cahn. The average convergence
rate 7 is computed by the first 500 iterations of the algorithm. By (BIH), the con-
vergence rate is linear w.r.t. Ny(v/hy + o(v/Iig)) when 6 o< Nyy/hy is small. This is
reflected in Figure Bl Unlike the case of Allen-Cahn, in which the PDHG algorithm
converges as ] increases, the iterations for Cahn-Hilliard diverge as 0 Nivhe
increases. This is reflected on the right plot of Figure

For a fixed time step size h;, denote by Npyax the maximum number of time
steps that guarantees the convergence of the PDHG algorithm. We plot the relation
between Ny.x and hy on a logarithmic scale in Figure Bl We observe the relation
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(C) Plot of 7 vs N,. Fix b, = 5 x 102, 1 < N, < 40

FIGURE 1. Convergence rate of the residual term Hﬁ(Uk)H w.I.t.
h¢, Ny for Allen-Cahn equation

Ninax = O(ﬁ) when the step size h; is not too small. The dependence of the

convergence rate w.r.t. Nyy/h; is shown in the right plot of Figure F

Remark 7. It is worth mentioning that some of the tested values of h; in Figures
2l Bl may have exceeded the theoretical bounds for uniqueness (cf. Remark M)
and convergence (cf. Corollary BI]). We point out that these bounds, derived
from ensuring convexity and positive definiteness in the numerical analysis, are
sufficient but not necessary. The figures primarily aim to illustrate the dependence
of convergence rate on N, - h; and N, - v/h;, rather than strictly adhering to the
bounds.

3.3. Lyapunov analysis for the time-discrete case. In this section, we discuss
the convergence of the time-discrete PDHG algorithm (2.I6]). Recall that the equi-
librium state of the PDHG dynamic (2.16]) is (U,,0) with ﬁ(U*) = 0, we consider
the following Lyapunov function

1 1
JU,Q) = 5(IU = U.|” +[1Q — 0l) = 5(IlU = U.[* + Q).

Theorem [§ provides a sufficient condition on the convergence of J when f(-) is
Lipschitz.
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PDHG residual convergence rate
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PDHG residual convergence rate

ot of 7 vs h,. Fix =1, =5x 1074, 1<k <
A) Plot of hy. Fix Ny =1, by 04k k<40

Theorem 8 (Exponential convergence of the PDHG algorithm (Z14])).
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0.6 0.8 1
theta = N’{sqrt(ht)

0 0.2 04
hy

(B) Plot of 7 vs N,. Fix i, = 0.005, 1 < N, < 22

FIGURE 2. Convergence rate of the residual term ||[F(Uy)| w.r.t.
h:, Ny for Cahn-Hilliard equation

B Nmax - hl log-log plot
2.2
2
— 18
]
£
£
°
1.
g ~
~
~
1.4 = K\\%
1.2 I\ K‘:
2.4 2.2 2 -1.8 -1.6 -1.4 -1.2 -1 -0.8
log,(h)

FIGURE 3. Npax — ht log-log plot for Cahn-Hilliard equation
#2). We solve the equation on 64 grid with hy 0.01 - k,
k = 0.5,1,2,...,13. The yellow triangle has slope equal to %
The orange dashed line is the linear regression of data points with
rather large hy = 0.01 -k with 5 < k < 11.

Consider

the following assumptions,

(3.16)

e (On PDE ([IT))) Assume (A), ([B) hold.
e (On numerical scheme 1) of PDE) Assume (C)) holds. Suppose the time

step size hy and T = Nyhy satisfy bTLip(R) (g p.c(he) < V2 —1. Suppose we
pick 0 > bTLip(R)Cap.c(he) with 6 < /2 — 1.

(On PDHG algorithm ([216)) Suppose (D)) holds. There exist ¥ = wTp, 0 =
:—57 € > 0 satisfying

- 1
07e¥(9) = 792(Fe, 0,0)> > 0.
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—%—N,"h, =0.001 —#— N,"sqrt(h,}=0.001
——Nh, = 0.01 —#— N,sqrt(h )=0.01
—+—N;'h, = 0.05 —#— N/'sart(h,)=0.05
e N'h, =0.15 +—Nsqrt(h)=0.15

@

0.06

Ny

PDHG residual convergence
°
®

0.02

log,,(N,) log,1o(h)) log5(N,)

-1
log,(h)
10" o 15 0 14

(A) We solve Allen-Cahn equation (4.1) Plot of 7 vs (B) We solve Allen-Cahn equation (4.2) Plot of 7 vs
(logyg N, logy hy), with Nyh, = 0.15, 0.05, 0.01, 0.001 (logyy N, logy hy), with /Njh, = 0.15, 0.05, 0.01, 0.001

FIGURE 4. Plots of 7 vs (Ny, hy)

Here we denote U(0) = 1—-20—02, and Q(u, 0,0) = [1—u—o|+(|1—u|+0)0.
We choose PDHG step size for the dual variable as

J— 9?6\11(0) - iQ(ﬁE, 0, 0)2
P 4G + 06) (1 + 0)2max{32(1 + 0)2, (1 — 7e)2}’

and set the extrapolation coefficient w = %, the PDHG step size for U as

— TP
TU—?,

Under the above conditions, there exists a unique U, s.t. ﬁ(U*) = 0. Furthermore,
assume that {Uy, Qi } solves the PDHG algorithm (ZI6l) with arbitrary initial con-
dition (U, Qo). Write T, = J(Ug, Qk). We have

kol d+/D2 14
) (s e

(3.17)

)

2
3.18 < | ———
(3.8) e

where
o (eFeW () — 10(7e, 0,0)?)
©2(1+0)?max{32(1 4+ 6)%, (1 — 7€)2} (3 + 0¢)?

The proof of Theorem []lis provided in Appendix

We can simplify the results in Theorem [ for Allen-Cahn and Cahn-Hilliard
type of equations, using similar argument in the proof of Corollary [ZI] for Allen-
Cahn (resp., Cahn-Hilliard) type equations. Suppose bLip(R)T < v/2 — 1 (resp.,

bLip(R)T . bLip(R)T
% < V2 —1). If we set 6§ = bLip(R)T (resp., = %), then we

have bTCy p (he)Lip(R) < 6 < V2 — 1.

Furthermore, we can pick specific values of the hyperparameters 7y, 7p,w, € to
obtain a more concise convergence rate ®. To do so, we denote u = 7e and assume
that u < 1. We set ¢ = 1 —Je¢ = 1 — u. Then the condition (BI6]) leads to

(1 — uw)u¥(f) — (1 —u)26% > 0, which yields % < u < 1. Furthermore, the rate
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d equals
B (1 —u)?(u(l — 20 — 0%) — (1 — u)6?)?
= A1+ 02 max 2L+ 02, (1 — w2} + (1 — W)
We further pick ¥ = (1 — u)e. Together with Je = u, we have ¥ = /u(l — u),

€ = /1= Thus,

5 2
o (1200 (1-%-4)
T 8(146)2 max{(1+0)2,(1—u)/u}’

Now the value of p is determined by BI7), 7v = &, w = % can also be deter-
mined. In summary, we have Corollary Bl

Corollary 8.1 (N,-independent convergence rate for specific RD equations). Sup-
pose ([A)), BN, [@), and D) hold. Assume hy, Ny and T = Nihy satisfy

o (Allen-Cahn type, G, = I, Ly is self-adjoint, nonnegative definite) Pick
T < —bL\/if)z}}c)’ or equivalently, hy < b{i—?}}%), Ny < L)L;{?(—E}HJ, We denote
0 = bLip(R)T < V2 —1;

o (Cahn-Hilliard type, G, = Ly, is self-adjoint, and nonnegative definite)

. (vV2—1)(2v/ah;+bch;) . 4(v/2-1)%a
Pick T < b (R) , or equivalently, hy < P (L (R) -V’

2y/a/hi+be _ bLip(R)T __ bLip(R)Nivhy
N; < {(\/5— DT(R)J' We denote 6 = 2\/aiii+bcht = 255+me <
V2 —1.

Then, there is unique U, with F(U,) = 0. Furthermore, if we choose u € (%, 1)
and set
(3.19)

u(l — 20)—6? _TP Vu(l—u) - U
N T VA T

TP = » TU
8/ u(l—u)(1+0)? max{u(1+6)2,1—u} 1-u

then Uy converges exponentially fast to U, i.e.,

) 9 k+1
Uk = Ud||” < Co :

D4 /32 14
Here
62 1)?
oo (7 2EVEEA N (120 (1—1_29';)
R 2 o1 T T 81 +60)2 max{(1+6)%(1—u)/u}

In the following example, we pick the hyperparameters hy, N¢, 77, 7p, w, € accord-
ing to Corollary Rl and apply it to different types of equations. Our algorithm is
guaranteed to converge linearly. The theoretical results presented in Theorem [§land
Corollary Bl are not necessarily the sharpest convergence rate. In practice, the ac-
tual convergence rate of our PDHG method is generally faster than the theoretical
guarantee in Corollary Bl This is reflected in Table [l When composing Table [II
recall that f(u) = u®—u, weset ¢ = f/(+1) = 2, and R(u) = f(u)—cu = u>—3u. In
our numerical result, we observe that |Uf;| <1 for any spatial index (7, j) and tem-

poral index ¢. Thus we use sup |R'(u)| = 3 as the value of Lip(R) in Corollary
u€[—1,1]
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TABLE 1. Theoretical convergence rate vs actual convergence rate
of ||Ux — U,||3. The constraints in the parentheses in the columns
of hy, Ny, and u are derived from the conditions in Corollary Bl
The actual rate r is solved from the linear regression model -k +b
given the numerical data {k,log(||Uxr1 — Us||?/||Ux — U.||?)} for
1 <k <400 (Allen-Cahn equation (£1])); and 1 < k£ < 500 (Cahn-
Hilliard equation ([@2])).
he N, “ - v w ; 7 Thc;);tc;ical A:;&al
w=10 | S0 Ta ue (0(?'25250 j) 00498 00996 50181 1.0 03000 00112  0.0723
ACED | w=01 | WL S . (0965760 j) 00574 01147 43387 10 02100 00141  0.0821
€ = 0.01 (<000(68?4) (<12> (ue (0(_)(')%21 1)) 0.0936 0.1872 2.6702 1.0 0.1500 0.0307 0.1325
€ = 10 (‘;')25?53) (<1(1)2) (ue (%564 1)) 0.0842 0.1684 2.9695 1.0 0.1640 0.0260 0.0537
CH E2) e =1.0 (18?2;5) (<59) (ue (0(,)(-)55’)78 1) 0.0475 0.0949 5.2662 1.0 0.2874 0.0103 0.0301
e =0.1 <.%%%(155) (<11) (ue (001236? 1) 0.0286 0.0572 8.7392 1.0 0.2741 0.0043 0.0169
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FIGURE 5. Plot of log ||Uy, — U,||? vs k (1 < k < 400) when using
hyperparameters specified in Table [ to solve Allen-Cahn equation
(1) with different €y on a 128 x 128 grid

[BIl during the calculation. The corresponding semi-log plots are shown in Figure
and Figure

Remark 8. ([BI9) may also not be the optimal choice of hyperparameters. We
provide suggestions on selecting the optimal hyperparameters in section
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FIGURE 6. Plot of log||Uy — U.||? vs k (1 < k < 500) when us-
ing hyperparameters specified in Table [ to solve Cahn-Hilliard
equation ([A.2]) with different ¢y on a 128 x 128 grid

4. NUMERICAL EXAMPLES

In this section, we test the proposed algorithm on four types of RD equations,
namely the Allen-Cahn equation, the Cahn-Hilliard equation, an RD equation with
variable coefficients (mobility term), and a 6th-order reaction-diffusion equation.
We verify the independence between the convergence rate of our algorithm and the
grid size N,. We discuss how the hyperparameters of the proposed algorithm are
chosen to achieve the optimal (or near-optimal) performance via numerical exper-
iments. We also provide comparisons between the implicit scheme with adaptive
step size h; and the IMEX scheme on long-time range computation. At the end of
this section, we make comparisons with three commonly used algorithms for resolv-
ing the time-implicit schemes such as the nonlinear SOR [38], the preconditioned
fixed point method [2] and Newton’s method [IT].

For all the numerical examples in this section, if not specified, we always set
the hyperparameters w = 1 and ¢ = 0.1. We terminate the iteration whenever
|[Res(Ug)|leo < tol with tol = 1075. Here the residual term Res(Uy) is defined in
@I7). All numerical examples are imposed with periodic boundary conditions. We
adopt the central discretization scheme to discretize the Laplace operator A, i.e.,
we set the discretized Laplace operator as Lapfm defined in ([Z2).
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FIGURE 7. We solve equation ([&I]) with ¢y = 0.01. We set 7y =
0.55, 7p = 0.95 for our PDHG method. (Left) Comparison between
our method (time-implicit scheme solved by the proposed PDHG
algorithm) and the IMEX scheme. We discrete the space into 128 x
128 lattices. We compute both schemes with large time step size
h; = 0.02 and compare with the benchmark solution solved from
the same IMEX scheme with hA; = 0.001. Blue curve indicates the
L! discrepancy between the IMEX solution on the coarser time grid
Umvex and the benchmark solution U,. Red curve indicates the
L' discrepancy between the time-implicit solution Uppug and U,.
(Right) Comparison between the front position of the numerical
solution solved via our PDHG method and the Nonlinear SOR
method, as well as the real front position.

Among four equations discussed in this section, equations (@1, (2, and (0]
have already been considered in [35], where more numerical results are demon-
strated. In this research, we mainly use them as test equations for validating our
theoretical findings and justifying the effectiveness of our method.

All the numerical examples are computed using MATLAB on a laptop with 11th
Gen Intel Core i5-1135G7 @ 2.40GHz CPU and 16.0 GB RAM. The correspond-
ing codes are provided at https://github.com/LSLSliushu/PDHG-method-for-
solving-reaction-diffusion-equations/tree/main.

4.1. Tested equations. Throughout this section, we denote the double potential
function W (u) = ;(u? — 1), and thus W’(u) = u® — u.

4.1.1. Allen-Cahn equation (AC). We consider the Allen-Cahn equation

(4.1) % =alAu —bW'(u), on[0,0.5]* x[0,T], wu(z,0)=up(x).

We set a = €y,b = % with ¢g = 0.01. We set the initial condition as ug =
2XB(xz,,r) — 1 where z, = (0.25,0.25),7 = 0.2. For the precondition matrix ./,
G, =1, and Ly, = Afw7 and J; = 2I. We compare our method and the IMEX
method in Figure [l The zero-level set of the solution w(-,t) of this equation is
known to be the curvature flow of a circle [38]. A comparison among the plots of
the front positions is computed by our method, the Nonlinear SOR method. The
real solution is presented on the right-hand side of Figure [1
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TABLE 2. Centers and radius of the 7 circles

i 11 2 | 38 [ 415 [6]7]
x| w/2| w/4 | w/2 ™ |3n/2| w |3m/2
yi || 7/2 | 3n/4 |bw/4 | w/4 | w/4 | w | 3mw/2
ri || 7/5 | 2m/15 | w/15 | @/10 | w/10 | w/4 | w/4

4.1.2. Cahn-Hilliard equation (CH). We consider the Cahn-Hilliard equation

(4.2) % = —aAAu+ AW’ (u), on [0,27]2 x [0,T], u(x,0) = up(z).
We set a = €% and b = 1. We set the initial condition ug as a modified indicator
function whose value equals +1 if (z,y) falls inside any of the seven circles and —1

otherwise, i.e.,

7
uo(w,y) = =14 o(v/(z — )2 + (y — y:) = 1),
i=1
where the mollifier function ¢ is defined as

52
2e 2 s<0 .
p(s) = ,  with e =0.1.
(5) {O s>0

The centers and radii of these seven circles are listed in Table[2l For the precondition
matrix 4, G, = L, = Aii’ and Jy = 21.

4.1.3. A reaction-diffusion equation with variable coefficient (VarCoeff). We con-
sider the following equation with variable coefficient (mobility term) o(-),

0
(4.3) 8—1: =aV - (o(z)Vu) — bW’ (u), on [0,27]* x [0,T], wu(z,0) = uo(z).
We choose a = €9, b = % with €y = 0.01. The media o(z,y) = 1+ £ (sin® z +sin® y)
with p = 5.0. We set the initial condition ug = §(cos(4x) + cos(4y)). We adopt the
following time-implicit scheme

t+1 t
U - Uy

ij
(1.4) B
a
= h*2<0'i+%’j(U7ﬁ+l‘j*Ui,j)fo'i,%,j<U1‘,,j*Ui—l,j)+f7i’j+%<U1i,j+17Ui‘j)*0'i,j7% (Ui,5 = Ui j-1))
S

1
—vw' (Ui,

where 0 S t S Nt - 1, 1 S i,j S Nw, and UNw-i-l,j = U17j,U07j = UNz,ﬁUi,Nm—i-l =
Ui1,Uip = Ui, for all 1 < 4,5 < N,. And we set opg = 0((p — 1)hs, (¢ — 1)hy)
for any p,q € Q.

For the precondition matrix .#, G, = I, we approximate L by —EA;Z, whose
matrix-vector multiplication and inversion can be efficiently computed via the FFT
algorithm. Here 7 = Wll Joo(z,y)dedy = 1+ 5 denotes the average of o over
Q = [0,27)%. We set J; = 2I. We choose 7y = 0.5, 7p = 0.95 when applying our
PDHG method to solve the time-implicit scheme (Z4]).

The numerical solutions to [@3]) are provided in Figure Bl A series of residual
decay plots throughout our method are demonstrated in Figure
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FIGURE 8. Numerical solution of the time-implicit scheme solved
via our PDHG method on a 256 x 256 grid at different time stages
t=10.0,0.2,1.0,3.6,10.0,20.0

Furthermore, we denote

B(u) = /Q o) [Vu(@)? + bV (u(x)) d,

as the free energy functional associated with the reaction-diffusion equation ([@3).
Denote

(4.5)
a
By, (U)= ) (5(0i+§,j|Ui+m ~Uij|*+ 05541 Ui 1 — Ui,jl2)+bW(Uz’,j)) h3

1<4,j< Nz

as the discrete analogy of E(u). The free energy Ej_ (U') versus t;, plot of energy
decay is presented in Figure In addition, a comparison between the proposed
scheme and the IMEX scheme can be found in Figure [l

4.1.4. A 6th-order reaction-diffusion equation (6th-order). We consider the follow-
ing 6th-order Cahn-Hilliard-type equation:

(4.6)

0

2= AGA- (W ()~ AN (EAu—W'(w), on 0,20 x[0,T], u(-0) = uo.

In this example, we choose parameter ¢y = 0.18. We set the initial condition
U()((E y) — 2esinx+siny—2 + 929~ sinz—siny—2 _ 1.

When we set up the precondition matrix .#, we approximate G;, by
Ah(E%Ah — W”(:I:l) + 6%) = Ah(E%Ah -2+ 6%),

and set L, = €2A;,. We pick Jr = 2I. We choose 7y = 0.5,7p = 0.95 for
our PDHG method. A comparison between our proposed scheme and the IMEX
scheme is provided in Figure
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FIGURE 9. The loss plot of log;q(Res(Uy)) vs iteration number k.
We solve ([{3) with hy = 0.002. The plots (from left to right) are
the loss plots at 30th and 90th subinterval.
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FIGURE 10. We compute the free energy on [0,5]. (Left) Free
energy decay (blue) of the time-implicit scheme (solved by PDHG
method) with h; = 21073, and the reference energy decay (red)
solved from IMEX scheme with h; = 10~%. The relative error
between them is plotted in orange. (Right) The log —log plot of
free energy.

4.1.5. Grid-size-free algorithm. As emphasized previously in section [Il the conver-
gence rate of our algorithm is independent of the grid size N,. This has also been
verified in Corollary [Tl and Corollary Bl (Recall that the quantities 8 and 6 in
these corollaries are independent of N,.) In this subsection, we verify such irrel-
evance by testing our algorithm on various types of equations with different grid
sizes N,. The numerical results are demonstrated in Figure [[3] where the number

of iterations required upon convergence directly reflects the convergence rate of our
PDHG algorithm.

4.2. Comparisons with the convex splitting method. The convex splitting
method originally proposed in [I5] seeks a specific decomposition of the function
F(-) : R* — R, such that the semi-implicit time-discrete scheme applied to the
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FIGURE 11. (Left) Comparison between our method (time-
implicit scheme solved by the proposed PDHG algorithm) and the
IMEX scheme. We discretize the space into a 256 x 256 lattice.
We compute both schemes with large time step size hy = 0.01 and
compare with the benchmark solution solved from the same IMEX
scheme with h; = 0.001. Blue curve indicates the L! discrepancy
between the IMEX solution on the coarser time grid Upygx and
the benchmark solution U,. Red curve indicates the L' discrep-
ancy between the time-implicit solution Uppyg and the benchmark
U,. (Right) Plot of |[Uppuc — Us| (up); and plot of |Umnvex — Us|

(down).
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FIGURE 12. Similar to Figure [[Il (Left) Comparison between
the L' discrepancy of our method and the IMEX scheme with
ht = 0.01. (nght) Plot of |UPDHG - U*‘ (up); and |UIMEX - U*|
(down).
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FIGURE 13. Relation between the number of iterations needed for
convergence and space discretization IV,. We verify on four differ-
ent equations with N, = 50, 100, 150, 200, 250. We set ¢y = 0.01
for the Allen-Cahn equation and ¢y = 0.1 for the Cahn-Hilliard
equation.

gradient flow
d
T
is energy stable. To be more specific, suppose F is splitted as F'(u) = F.(u) — Fe(u),
where F,, F, are convex functions on R". Here “c” denotes contraction, and “e”

denotes expansion, which indicates the effect of the gradient fields VF, and VF,
in the gradient flow. Consider the scheme

(t) = =V F(u(t))

Wt — ot
(4.7) —5— = ~(VE@™) = VE.(@'), 0<t<N.
t
It can be shown that F(u!*!) < F(u?) for all t = 0,1,2,..., i.e., the numerical

scheme preserves the decaying of energy.

Many RD equations can be interpreted as gradient flows in certain functional
spaces. The convex splitting method has been widely applied to compute these
equations. We refer the readers to [50] and the references therein for more details.
In comparison, we demonstrate that our proposed algorithm, which employs the
PDHG method for solving the time-implicit scheme, offers notable advantages over
the convex splitting methods. Specifically, it achieves higher accuracy in computing
the phase-field models with weak diffusion and strong reaction.

Recall the Allen-Cahn equation (), which can be cast as the L? gradient flow
of the free energy [, 2|Vul?® dz + % JoW(u) dx. For the numerical solution,
we adopt the finite difference scheme and consider the discretized energy function]
FU)=%3; R2||V 0, Uii|1? + % > h2W (U,;). Following the discussion in [21],

we decompose the double-well potential W (u) = *(u? — 1)? = We(u) — We(u) in

(Uz‘+1,rUi—1,j Ui,j+1*Uz‘,j—1)
, .

1Here we denote discrete gradient Vi, Uij ==
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FI1GURE 14. Comparison between the time implicit scheme and the
convex splitting scheme: (Left) We discrete the space into 128 x 128
lattices. Similar to Figure[l] we compute both schemes with rather
large time step size h; = 0.02 and plot the L' discrepancy curve
versus time (with the benchmark solution solved from the IMEX
scheme with h; = 0.001). (Right) We discretize the space into
256 x 256 lattices, pick h; = 0.005, and plot the front position
versus time for different numerical schemes.

twowayﬁgz
_ 1o _ Ly 3. 1
(A) Wc(u)—Qu, We(u) = ke +2u E
(B) Welw) = zu'+7, Wolw) = ~u’
o(u) = Ju”+ 7, e(u) = Fu”.

One then considers F.(U) = ¢ 35, - h2 Vi, Uyl1*+ 5 32, ; haWe(Uij) and F(U) =
% D h2W.(U;;). The convex split scheme [{T) yields

h h
(48) (I = coheln U™ + WU = U + W), 0<t< N

It is worth mentioning that (£J]) reduces to a linear equation if W,(-) is quadratic.
Otherwise, (£38)) is a nonlinear root-finding problem and the proposed PDHG algo-
rithm can be applicable here to resolve for U1,

We apply ([A8) using splitting schemes (A) and (B) to [l with ¢y = 0.01 and
compare the results with the time-implicit scheme. The numerical results are pre-
sented in Figure [d As shown in the results, a small €y in this phase-field model
poses a challenge for the convex splitting methods, as they are unable to accurately
capture the movement of the zero-level set of u(-,t). In contrast, the time-implicit
scheme maintains computational accuracy. Further comparisons between the time-
implicit scheme and the convex splitting method can be found in [50].

2 Although We(-) for scheme (A) is not convex on R, it is convex on the finite interval [—1.7,1.7].
This remains a reasonable splitting as long as Uitj lies in this interval for arbitrary 1 < 4,5 < Ng,

0<t< Ny
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TABLE 3. Comparison of CPU time (s) with different Nys (all
problems are solved on 256 x 256 grids)

Equation Name [7v, 7p, Ttotal] | M x N,

v e |l><10(] 2x50 4x25 10x10 20x5 25x4 33x3+1 5H0x2 100x1

AC(eo = 0.01) [0.5,0.5,1.0] — - 1198.41 219.52 137.71 138.65 88.53 106.41 92.72
AC(co =0.1) [0.5,0.5, 1.0] 0028 5773  34.37 5043 41.37 2662 24.20
AC(ep = 1) [0.5,0.5,1.0] 64.28 38.11 23.42 24.24 13.05 13.29 12.51 10.89 10.72
CH [0.5,0.5,1.0] 775.15 208.93 170.77  252.99 148.96 183.34 101.41 77.35 86.37

6th Order [0.8,0.8,0.1] - - 374.82  389.90 285.12 384.52 199.11 188.58 208.30
Varcoeff [0.95,0.5,1.0] — - 305.73  206.72 204.34 153.88 144.67 142.22  61.46

4.3. Hyperparameter selection. Given the spatial and the temporal step sizes
hs, hy of the implicit scheme, there are 5 hyperparameters to be determined for
our algorithm: N, 7y, 7p,w, and €. In the following, we discuss the choice of these
hyperparameters.

(1) (Choosing N;) As mentioned previously in section [Z3] one can distribute the
computational task into multiple blocks and apply PDHG algorithm to evaluate
each block of solutions sequentially. Suppose we aim to solve an equation on
[0, Tiota1]- We may divide the time interval into M - N; subintervals, i.e.,

M M Ny
[0, Tiotal] = U I = U I |,
k=1 k=1 \j=1

where each I, ; = [(k — 1)T + (j — D)y, (k — 1)T + jhy],
with 7' = Ttotal/M, h,t = T/Nt

We then apply our proposed method to each subinterval I in order to obtain
the entire numerical solution on [0, Tiotal]. We test our algorithm with different
combinations of M - N; on various types of equations. Unless specified otherwise,
we choose w = 1,e = 0.1. We set the stopping criteria as |[Res(Ug)[s < 1076.
The efficiency of our algorithm under different scenarios is reflected in CPU time
demonstrated in Table Bl Among the series of experiments, we observe that it is
usually efficient to pick NV; < 5.

(2) (Choosing 1y, 7p) Theoretically, choosing 7y, 7p as suggested in Corollary B1]
will guarantee the convergence of our method. In practice, we can pick a larger
Tu, Tp to achieve faster convergence. Generally speaking, the optimal step size 7p
is around 0.9, and the optimal ratio o = :—5 should be slightly less than 2. The
intuition of choosing ¢ > 1 is that we want to treat the inner optimization of the
functional E(U , Q) defined in ([ZI5]) w.r.t. the dual variable @ more thoroughly. In
fact, it is common in bi-level optimization to choose a larger, more aggressive step
size for the inner-level optimization problem both practically [I7] and theoretically
[BOU55]. A rather efficient choice of the step sizes (7, 7p) is (0.5,0.9). This is verified
in Table @ in which we compare the choice (0.5,0.9) with other combinations of
(TU; TP) .

(3) (Choosing w) We pick w = 1 in our experiments. If one increases or decreases w,
one should modify 7p correspondingly so that ¥ = w7p remains unchanged. Once
7 /0.9 is fixed, we generally achieve the optimal (or near-optimal) performance of
our algorithm.
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TABLE 4. Comparison on speeds among different ratios o = £

for different equations v

e = 0.1 for all problems | v =0.9,7p =05 7y =0.65,7p =0.65 7y =0.5,7p =0.9
6th Order [T = 0.5] x: = fgg xf = 28 fﬁi? 4974972 38?5?
VarCoeff [T = 0.5] %2 z igg %ﬁ z 28 1105§9223 1103%358 892..5348

TABLE 5. Comparison of CPU time (s) between our treatment and
the classical IMEX method on computing equation ([@.3]) on [0, 20]

IMEX
Our method | —G=5=—7—0(9 707 F, =107
1481.76 s | 1814.40 s 4158.18 5 6216.81 s

(4) (Choosing €) We set ¢ around 0.1. Recall that supy, {L(U,Q)} = TG

2e
- 2
creasing e will decrease the convexity of the functional %, which will slow down
our algorithm. Decreasing e brings our algorithm closer to our original version of
PDHG method [35], in which we discover stronger oscillations towards convergence,

which may also affect the efficiency.

4.4. Long-time computation via adaptive time step size. It is an important
topic how one can efficiently compute the RD equation for large time T to study
its behavior near the equilibrium state. Since we can pick large time step size h;
under the implicit scheme, our proposed method offers an opportunity for faster
computations to approximate the equilibrium state of RD equations.

To be more precise, we adopt adaptive time step size h; during the update of
time-implicit scheme (). Suppose we set up an upper bound h; > 0 for time
step size h;. As hy < hy, we increase h; by 10% if the proposed PDHG algorithm
converges in less than 7 steps. Otherwise, we decrease h; by 50%. If h; exceeds hy,
we reset hy = hy.

We implement this strategy of adaptive time step size on equation (£3) with
T = 20. As we pick ¢g = 0.01, ([£3) possesses weak mobility-diffusion and strong
reaction. We solve the equation with N, = 256, and set the initial time step size
hy = 0.01, we set hy = 0.08. As shown in Figure [[5 our method works efficiently
in this example, with an average h; =~ 0.04. We also compute the same equation by
using the classical IMEX method [25] in which we treat the linear part as implicit
and the nonlinear part as explicit. We apply the preconditioned conjugate gradient
(PCG) algorithm with tolerancedd n = 1070 to solve the linear system at each
IMEX step. For [@3), the IMEX method only works stably for a rather small time
step size hy < 0.5-1073. As reflected in Table Bl our method works better on
long-time computation.

4.5. Comparison on computational efficiency. In this section, we compare
the computational efficiency (in CPU time) of the proposed method with some

3Suppose we apply PCG algorithm to solve the linear equation Az = b with A positive definite.
Denote xj, as the solution obtained at the k-th iteration of the PCG algorithm, then we terminate
the PCG iteration if [[Azy — b]|lco < 7.
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FIGURE 15. (Left) Plot of time step size h; versus physical time
(Right) Plot of PDHG iterations versus physical time ¢; (Bottom)
Plot of accumulated CPU time (s) versus physical time ¢

classical algorithms used for solving time-implicit schemes of the reaction-diffusion

equations.

(1) (Nonlinear SOR) The Nonlinear SOR (NL SOR) method is the nonlinear
version of the successive over-relaxation (SOR) algorithm. It is used to
solve the implicit scheme of the Allen-Cahn equation (£I]) in [38]. We set
the tolerance of the Newton’s method used in NL SOR as 1071°. We set
v = 0.55,7p = 0.95 for our PDHG method. We compare NL SOR with
our algorithm in Figure

(Fixed point method) The fixed point method is also a frequently used

algorithm to solve the time-implicit scheme of the RD equation. We refor-
mulate the time-implicit scheme (2.1 as

(I 4 ahyGnLp)U™ = Ut — bh, Gy f(UH),

For fixed U?, we establish the following fixed point iteration for solving

t+1
Uttt

Uki1

= (I + hGn(aly +bel)) U — bhiGr(f (Ur) — cUs)),

with initial guess Uy = U".

Here ¢ is a tunable constant that can be chosen as the value of f/(-) at
equilibrium state. When f(u) = W(u) = 1(1—u?)?, weset ¢ = f'(£1) = 2.
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FIGURE 16. Accumulated CPU time comparison between our
method (red) and Nonlinear SOR method (blue) applied to Allen-
Cahn equation ([@J]) with ¢g = 0.1 and h; = 0.005. We solve the
equation on a 128 x 128 grid. The quantile plots are composed
based on 40 independent runs of both algorithms.

CPU time(s)

datal

—&— Accumulated CPU time(PDHG)
data2
—&— Accumulated CPU time(PCG fixed point)

0 0.05 0.1 0.15 0.2 0.25
Physical time

FIGURE 17. Accumulated CPU time comparison between our
method (red) and PCG-fixed point iteration (blue). We solve (@3]
with ¢g = 0.1 and hy = 0.01 on a 256 x 256 grid. These quantile
plots are composed based on 40 independent runs of both algo-
rithms.

The linear system is solved by the PCG algorithm with tolerance n =
10719, We set 7y = 0.5, 7p = 0.95 for our PDHG method. We apply both
algorithms to (3] with g = 0.1. We compare the fixed point method with
our algorithm in Figure [I'

(3) (Newton’s method) Newton’s method with the PCG algorithm as its lin-
ear solver serves as a popular tool for solving implicit schemes of RD equa-
tions with a higher order of spatial differentiation. Here we consider New-
ton’s method introduced in section 3 of [I1]. In [II], Newton’s method is ap-
plied to the spectral discretization of the solution while here we apply New-
ton’s method to the finite difference scheme. We set 7y = 0.5,7p = 0.95
for our PDHG method. We apply both methods to (£6]). According to
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14r 160

datal
12+ —&— Accumulated CPU time(PDHG) 140
data2

—©— Accumulated CPU time(Newton)

120

CPU time(s)
CPU time(s)
2 o B2
g 3 8

IS
S

N
S

datat

—&— Accumulated CPU time(PDHG)
data2

—©— Accumulated CPU time(Newton)

s s s s s s s s s 0 s s s s s s s s s s
1 2 3 4 5 6 7 8 9 10 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

Physical time %104 Physical time

FIGURE 18. Accumulated CPU time comparison between our
method (red) and Newton’s method (blue). Solving equation (Z.0)
with hy = 0.001 (Left) and hy = 0.005 (Right). We solve the equa-
tion on a 256 x 256 grid. These quantile plots are composed based

on 40 independent runs of both algorithms.

TABLE 6. Time costs of applying the PDHG method and Newton’s

method to () on 256 x 256 grid

Method PDHG PCG Newton’s method

33

hy xn 0.01 x 50 | 0.005 x 100 0.001 x 500 0.0005 x 1000 0.00025 x 2000

CPU time(s)| 263.90 | 422.28 299.02 470.71 773.01

our experiments, we observe that when the time step size h; < 0.005, New-
ton’s method works more efficiently than the PDHG algorithm. When
h; > 0.005, the PDHG method is faster. Such observation is reflected in
Figure Table [0l demonstrates that the PDHG method is more efficient
than Newton’s method when the latter is applied to multi-interval compu-

tation with smaller time step sizes.

5. CONCLUSION

In this research, we reformulate the PDHG algorithm proposed in [35] by intro-
ducing a quadratic regularization term to solve implicit schemes of RD equations.
Theoretically, we establish unique existence results for the time-implicit schemes of
general RD equations. We further prove the exponential convergence for both the
PDHG flow and the proposed discrete-time PDHG algorithm. In addition, we show
that the convergence rates are independent of the grid size NV,. Our theoretical re-
sults are also supported by numerous numerical experiments. We test the proposed
PDHG method via four different types of reaction-diffusion equations. Based on
these numerical examples, we verify the optimal (or near-optimal) way to set the
hyperparameters of our algorithm. We also verify the efficiency of our method by
comparing it with several classical root-finding algorithms, such as the nonlinear

SOR method, the fixed point method, and Newton’s method.
We end the discussion by mentioning important future directions.
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e The convergence rate achieved in this research is not the sharpest rate. Can
we establish a sharp convergence rate in terms of the algorithm’s hyperpa-
rameters?

e Currently, all of the proposed preconditioners are time-independent. How
can we design a more sophisticated time-dependent preconditioner to assist
the convergence of the generalized PDHG algorithm?

e As we accumulate multiple time intervals together to formulate a saddle-
point scheme for the root-finding problem, we cancel the causalities among
different time nodes. Will this causality-free optimization strategy render
the possibility of parallel computing for the proposed PDHG time-implicit
solvers?

e While the proposed algorithm performs efficiently on reaction-diffusion
equations, we aim to extend our approach to simulate general equations
in physical modeling, including Fokker-Planck equations and their general-
izations in complex systems.

e Extend the proposed primal-dual approach to nonlinear, high-dimensional
equations by integrating deep learning algorithms.

APPENDIX A. PROOFS OF SECTION [B3.]]
A.1. Proof of Theorem [1l

Proof of Theorem [Il. To prove this result, we only need to prove that the following
single-step scheme

(A1) v ;tUO = —Gn(alpU +bf(U))

admits a unique solution U for arbitrary U°. By writing ¢ = U—U", we reformulate

(B as

(A.2) 4 Guala(U°+€) + b(U° +)) = 0.

We first show that € solves (A2)) iff € is the critical point of the following variational
problem

(A.3) min €16, + 2O+ )T LU+ )+ WU +6)T1
' £€Ran(Gy) 2h; 2 h ’

Here we denote W (-) as the primitive function of f(-). Let us define V = Ran(Gy,)
and J(¢) as the function in ([A3)) for simplicity. Define Iy, as the orthogonal
projection from RY¥=*Nz onto the subspace V.

We know that £ is a critical point of J on space V iff

ImyvJ7) =o.
By direct calculation, this is equivalent to
Gi
W +allpyLp(Up+ &)+ by f(U+E) =0.
t

Writing the projection II, = ngh, we obtain

gl (h% +a GnLp(Uo+&) +b th(U+€)> =0.
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Since the vector inside the above bracket belongs to V', the above is equivalent to
@A.2).

We now prove the existence and uniqueness of the minimizer to the variational
problem (A3 under condition (3], which implies the theorem.

By a change of variable ¢ = @z, where ()7 is defined as in the spectral decom-
position [3.2) of Gy, and z € R", (A3)) is equivalent to the following nonconstrained
optimization problem

{xTA_lm

(A.4) min oh

it + ga:TQlTﬁthera U L,Qiz + b W(U° +Q1x)T1}.
e

Denote J () as the function in the above problem. Computing \4 yields
~ A1
VI (x)= ST aQ{ LrQrz+aQ{ LU +bQ] (V' (U +Q12)+¢(U°+Q12)).

Then
(z—y, VI(x) - VI(y))

= =) A~ g) +ale ) QT LiQu(e )

+0(Q1(z =) (V'(U° + Quz) = V'(U° + Quy))
+0(Q1(z — ) (DU’ + Quz) — $(U° + Q1y))

A
>@—y)' (h_t - anTEhCh) (z —y) + bK ||z — y||* — bLip(¢)||x — yl?

Afl
> (i (B +a@T 2101 ) + 00— t1ipte) ) L =l

Then the condition (B3] leads to

A—l
& = Amin (h— + (IQIAChQ1> +bK — bLlp((b) > 0.
t

This shows the a-strongly convexity of J , which leads to the existence and unique-
ness of the minimizer to (A3), which accomplishes the proof. O

A.2. Simplified conditions for specific reaction-diffusion equations. The
condition ([B3)) can be simplified for specific types of equations. We discuss two
examples.

e (Allen-Cahn equation with periodic boundary condition) In this case, G =
Id,£ = -A. f(z) = 2> — 2. We set G, = Iyz, and L), = —Afx =
Iy, ® (—Lapfw) + (—Lapfw) ® In,, where Lapﬁw is defined in ([Z.2]). Then

4 k
AP = h—isinQ <J7:f_x> . with 1 <k < N,
are the eigenvalues of —Lapfx. And the eigenvalues of % +a Q] LLQ =
hit—l—aﬁh are \g, = h%—l—a()\kp—l—)\lp), with 1 <k, < N,. Thus, )\min(Ah—:l—l-
0 QI LaQ1) = -
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Furthermore, we can decompose f(z) = V'(x) + ¢(z), where

Lz2 —1)2, |z : T :
V(x):{4( D2zl > 1 ¢(as):{0’3 |z| > 1;

0, |z] < 1. z?—x, |z|<1.

Then one can verify that K = 0 and Lip(¢) = 2. In this case, condition

B3) implies
1 1

" Tip(op 2
e (Cahn-Hilliard equation with periodic boundary condition) In this case,
G=-AL=-A. f(z) =2>—x. Weset G, =L, =1 ® (—Lapﬂ) +
(—Lapfw) ® I. We have

AL 1 p p [a
: = 1 —_—_— > —.
)\mm < ht +a A) 1§k71111§111\1[m71 { ()\kp i )\lp)ht + a()‘k + >\l )} - 2 ht

Thus, a sufficient condition for (33)) is

< 4a> _ a®

b’Lip(¢)?  b*’
It is worth mentioning that the conditions on h; for both Allen-Cahn and Cahn-
Hilliard equations are independent of the spatial step size h, which makes it possible

for our scheme to overcome the CFL condition required in the time-explicit scheme.

APPENDIX B. PROOFS OF SECTION
B.1. Proofs of section [3.2.9]1 To prove Lemma [ we need Lemma[@ and Lemma
[l
Lemma 9. Suppose X > A > 0. Assume p > 0 satisfies —= — %

< 2
\/Z NE

s (1) (- 5) i (14

then we always have A < B. Then for any X\ € [\, \|, and~y, e > 0 with A < ve < B,
the matriz By
A —5(n— (1—76)A)}
B.1 By = 2
. v= =10 e
is always positive definite.

Define

_ VB <1+\/_ 1_T<1+\\7_ and the

condition ﬁ - LX < % yields —(1 — %) <1+ % This yields
max{ \/E, —ﬂ}<1+\/—z
VA VA VA
Taking squares on both sides of the above inequality gives A < B.
On the other hand, since YA > 0, and pe > 0, we know B) is positive definite
if and only if det(By) > 0. In order to alleviate our notations, let us denote the

quadratic polynomial g, x(-) as

Qu () = N2a? =2\ + Nz + (n = V)2

Proof of Lemma [ First, we have
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Then we know det(By) = —5qu,x(7e).
Now, for fixed A € [\, A], the two roots of g, \(x) are (1 +

0 if
cens (-2

On the other hand, we have

o () e (1) (1) -

{6}

As aresult, (¢ 5 I = (4, B). Thus, we have shown that for any A € [, AJ, and
A < e < B, qu(ve) < 0. This directly leads to the assertion of the lemma. O

2
) . Thus g, (z) <

SIS

S5

and

Lemma 10 (Positive definiteness of H ). Consider the matriz H,,

_ 002 —3(ul = (1 =~e)%)
H, = {—%(ul - (1-9ex) pel ] ’

with 3 symmetric and positive definite. Suppose 0 < A < X\ are two positive numbers
such that the spectrum A\(X) C [\, A]. We further assume that # -l < Z. We

R
adopt the notation A, B in Lemma [, i.e.,

A_max{@_%)i(l_%)?}, andB_(ng)?

By Lemma @, we have A < B. We also assume that v,e¢ > 0 satisfy A < ye < B.
Define the function ¢, () as

1
(B.2) Pure(2) = 5(v2 + pe = V(72 = pe)? + (p = (1= 76)2)%),
We denote 8 = min_ {p, (A}, then 8> 0. And we have H, = SI.
A€, A]
Proof of Lemma [I0. For any A € [\, \], consider the matrix By as defined in (B.)),
i.e.,
Bi=| ., —3(n— (1 =703
—5(p=(1 =76 i€

By Lemma [0 we know B, is positive definite. By a direct calculation, the eigen-
values of By are given by (we assume A (B)) > A2(B))),

_ e £ VOA—p)? + (1= (1—7e)))?
5 .
Thus A2(B)) = ¢u.~.(A). Since By is positive definite, Aa(Bx) = @p.~,c(A) > 0.
As a result, @, (A) > 0 for A € [A,A]. Since ¢, (-) is continuous on the
compact set [\, A], we know the infimum value B > 0. At the same time, it is not
hard to verify that By > SI for any A\ € [\, A

(B.3) A1,2(By)
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To estimate H, from below, let us denote A(X) = {A, Ao,..., An} with Ay >
A2 > -+ > Ay > 0 as the eigenvalues of matrix ¥. Since H , is symmetric, H, is
similar to the following block diagonal matrix via an orthogonal transform

B,
B,

By,

with each B), defined as in (BI). Since each A\; € A(X) C [A,A], the above
argument applies to every By, i.e., By, = 81 for any 1 < j < N. This leads to
H, >3l O

We are ready to prove Lemma 2
Proof of Lemma 2l We denote
¥ = DE(U)DEU:) " = (I + Dn(U)(I + Dy(U)"),

and compute

(B.4)
41,0, Q) = FU) T DFW)U 44 Q7Q
~F(U) ' DE(U)DFU)T(Q+7Q) + 1 Q" (—eQ + F(U))
—F(U)TS(Q +7(—=€eQ + F(U))) — el QI* + pQ" F(U)
= ﬁ(U) (W ~ (1 =79)D)Q —7F(U) SE(U) - pe| QI
— _[F()7,Q"] s _7(21 ) —5(ul _,u(elj_ ’YG)E)] {Fé?U)}
denote as H,
=-[FU)", Q" H, [FU)", Q"
We denote 01(U;) > -+ > on(Uy) as the singular values of the Jacobian matrix

DFE(Uy). Tt is not hard to verify that the spectrum of ¥

AE) ={oi(Uy),...,0% (U}
According to definition (B:6]) and B, we have
AZ) C [¢?, 7.

Now we apply Lemma [0 with A = 02, A = 2. We prove that H, ~ B3I for any
U; € RN, As a result, we obtain the followmg 1nequahty

STULQ) = ~[FO),Q"] Hy [F@)T, Q") < —5(IFWIP + @i,

Furthermore, one has

max{1L, g} (||F(U) | +|QII*) > [IF(U)|)? + p]|QI%,

which yields
2

n 2 2
IF@IP +1QIP 2 i T,

Z,(U, Q).
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This finally leads to

jt 1(Ut, Qr) < #ﬁu} w(Ut, Q).
And the Gronwall’s inequality gives
Z,(Us, Q) < exp ( 25 )IM(onQo)-
max{1l, u}

We now prove Theorem [Bl

Proof of Theorem Bl. Let us pick the hyperparameter © = ¢2, one can verify that
1 satisfies (BI0). Furthermore, /7€ =1—4. Since [§| < 1,1 -1 < Ae<1+ 1
This verifies that /7€ satisfies (3.11]). Now Lemma [2] guarantees that ¢, . > 0 on
[02,5?%]. For z € [02,5?], we further calculate

DN =

Pue(2) =5 (V2 + pe — /(72 + pe)? — (dyepz — (p — (1 —7€)2)?))
_ dyepz — (p— (1 = ye)2)?

2z + pe+/(vz + pe)? — (dyepz — (n— (1 - 7€)2)?)
Sdyepz — (p— (1= ye)2)?

| =

4(vz + pe)
(1 —7e)%22 + 2u(1 + ve)z — p?
a A(vz + pe)
(14 ye)z — p)? 4 4yez?
4(yz + pe)
_@yrer— (1 +ye)z+p)2yFez + (1 + 7€)z — p)
a Az + pe)
(= L= VA (L - VRV + T — )
A(vz + pe)
(B.5) 1mVIEt =S (= VR (Vi + 181V (2 = 0)%2 — )
' - 4(v5? + pe) '
Since we have set
16 ,

(2) > (o — 16]v2)(|8lvz + 0)((2 = 6)%z — 0?)
Puy,e\Z) 2 SU_3) a5

> 8(11 5)(1—/<c|5\) 5|:1> (1 6)(3 - 0)a?

> —(1—k&|0])(3 - 0)a?
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If we denote 8 = 1[rn%n 2}{(,0“)%6(2)}, then we have
z€|o*,0

1—k|d])(3—0 2 1 in{og?, 1
S (-mp)B-0) o Lo min{o’ )

max{1, u} 8k max{1l,02} 8 K
Thus, the result of Theorem [ yields

min{o?
(U @1) < xp (- 301 - w3 - " ) 7,0, o).

Taking square root on both sides of the above inequality and using the fact that

IF (U] < \/Zu (U, Q)
we obtain
IF@I < exp (500 lah(s - ) ™ o) /7, . .

This implies our theorem. (I

Theorem 11 (Exponential decay of Z,,(Uy, Q¢)). Assume that (Uy, Q) solves ([B.0)
with arbitrary initial position (U, Qo). Then we have the exponential decay of the
Lyapunov function Z,,(Us, Qy), i.e.,

I,u(Utv Qt) é €xXp (_2)‘t) I,LL(UOa QO) 5

where
. 1 9 1 9
A = minfe — 2|1 =)ot/ — 1], = 5|(1 = 7)o /u 1,
1 1
ot = 511 =6t — ul}von = 11— ve)or — pl}-
In particular, when ve =1, u =0, and
o2—cg? o2—02 2
_%a'%qLa'g \/i (U%*ﬁ’dg) + 40721

202 ’

’Y:

2, 2 2, 2\3
_ 201+0, 1 4 (oito, 6
we have A = 207, oot ~ 20 (05_03) + O(a)).

Proof of Theorem [[1l We would like to find A such that
dz

— +2XZ2<0.
7 + <0
Then by Gronwall’s inequality, we obtain exponential convergence. We have
dz ~ M —~% Ll — (1 —~e)2)] [F(U)
— 42X I =[F(U)",QT 2 .
dt + (7). Q ] [%(u[— (1 —~e)X) Apd — pel Q
Using Lemma A.1 from [56], it suffices to have
2 1 2
(B.6a) A= 50% + 51(1 = 3o — 4l 0,
1
(B.6b) A= pe+ 5|(L =)o —p| <0,
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forall5® = o7 > 03 > -+ > 02 = g2, Let us define g1(0) = e— 3|(1—ve)o?/u—1],
and go(0) = vo? — 1[(1 — ye)o? — p|. Then (B.G) implies that

A< min min (o).
1=1,20,<0<0; QZ( )

Since g;(0)’s are piece-wise linear and have only one kink, it is easy to check that

min  g;(0) = min{g;(01), gi(on)} .
on<o<o;
This proves the first part of our theorem. When taking 1 = (1 —~e)(07 +02), one
can show by a straightforward calculation that ¢; (o) = g1(01). This also implies
that go(01) > g2(0n). Therefore, to make A large, we would like to equate gy (o)
and gz(op,). This yields

102 — o2 1
- 3 AT — ek - 11— 10} - o),
1 n
2 2
. 9t agiet — ot o))

1—1v(0f —o3)
In the special case of ye = 1, we obtain
22
vion + 5veras — (ot —oh)
1-19(of - o)
We can solve for v and we get (keeping the positive root)
103—02 1 (02—02 2 2
2 U%Jra;‘; \/Z (U%Jrai) + 40”

2
207

(B.8) 1=re=

’y:

Consequently, the convergence rate is

1o2—02 1 [1[02—02\"
A= 2 _ _—-”1 n - 1 n 402
Ton 402 +02 + \/4 <0’%+U% o

2
2 2 2 2\ 3
oi+o 1 oi+o
B.9 -9 2Y1 n _ — 4 1 n O 6 .
(1.9) A et () o
O
B.2. Proofs of section[3.2.2] To prove Lemmaldl we need Lemma[I2]and Lemma
L3l
Lemma 12. Suppose A is an nm X nm matriz defined as
Ay
-1 A

A — —I A3
-1 A,
where each Ay is an m X m matric with omin(Ak) > a > 0 and omax(Ax) < @, i.e.,

[Agvl > allvll, [[Agoll < @llv]| for any v € R™. Then A7 < 350, a™", and
||A|| <a+ 17 i-e-; Umin(A) > —Zn 1(1*’“7 and Umax(A) <a+ 1.
k=1=
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Proof of Lemma [I2. By a direct calculation, we have

ATt
(A1 Ag)7! Ayl
A = | (AAgds)7! (A2A3)~" Ayl
(AyAs.. A" (Ao A))™ (As...A)"' ... Al
Thus we can write A~! as
Ary 0 0] 0]
A .. :
AT = e 4|4 +o
E 0 -
0 Ann 1o Apm1 O An O ... O

denote as

=" Nh+d+-+ Jn.

Here, each Jj;, (1 < k < n) is an nm X nm block-(sub)diagonal matrix whose k-th
subdiagonal is

diag( Ak, 1, Ak+1,25- -5 Ann—k+1)-
And each A;; is defined as

Aij = (AjAj+1 L. Ai)il, if ¢ > 7.

Then one can bound |4~} as

n
JATH <Y 1kl
k=1
To bound each ||Ji|| from above, consider any v = [v] ,v9 ,...,v,)]T € R" with

each v; € R™, we have

n
1Teoll® =D 1Az j-ra05]?
j=k

= D Ay mprr e A Tyl <@ P < a7 o]

j=k j=k
This yields ||Jyv|| < a~F||v|| which further gives ||.Jx|| < a~%. Thus, we have proved
A=Y < >p_, a~*, which directly leads to the result o, (A4) > W

On the other hand, we write A as -
A =diag(Ay,...,A,) —J 1,
where J is an n X n matrix defined as
0

(B.10) J= - ,
1 0
and [ is an n X n identity matrix. Then we have
Al < [[diag(Ar, ..., A + [T @ I <@+ 1.
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Lemma 13. Suppose G, L are self-adjoint, nonnegative definite matrices. Assume
GL = LG. Then I+GL (or I+ LG) is orthogonally equivalent to I + AgAL, where
Ag, AL are the diagonal matrices equivalent to G, L. Furthermore, omin(I +GL) =
Umin(I + LG) >1+ Anlin(G)Amin(L) > 1.

Proof of Lemma I3 Since G, L commute, they can be diagonalized simultaneously,
i.e., there exists an orthogonal matrix @, s.t. G = QAgQ",and L = QA1 Q", where
Ag,Ap = O are diagonal matrices. Then [ + GL = I + LG = Q(I + AgAL)QT.
And thus Umin(I + GL) = Umin(—[ + AGAL) >14+ )\min(G))\min(L) > 1. O

We now prove Lemma [l
Proof of Lemma . We first recall
o= inf {amm(DF(U))} = inf {amm(//lleF(U))},

UerNZ UerNZ
7= sup {omax(DF(U))} = sup {omax(./ 'DF(U))},
UeRNE UeRNZ
where we denote F'(U) = 2U + h%,(a5U + bf(U)).
We have
(B.11)
_ 1 1 Omin (DF(U))
Omin M 1DF U) = > =
DR = DR ) = TDFO) AT, A
And
(B.12) Omax (M "' DF(U)) < omax(DF(U)) |2 71|.
Now we estimate the singular values of DF(U), since
X1
-1 X5
DF(U) = -1 X :

I X,
where each X; = I + ahyGnLLy + bhyGrdiag(f'(U?)). (Here we denote U =
(Ut .. UuNeT)

Then for each X;, we have
Umin(X ) > Umm(I + ahtghﬁh) - Um%x(bhtghdlag( ( Z)))
> omin(I + ahyGrLy) — ha|bll|Galll|diag(f (U))]].
By Lemma [[3] the first term above is no less than 1 + ahiA mm(gh)( in(Lp) > 1

Am
It is not hard to verify that ||Gn|| = Amax(Gr), ||diag(f/(U*))|| < Lip(f). This leads
to

Umin(Xi) Z 1- ht|b|)\max(gh)Llp(f)
We denote a = 1 — h¢|b|Amax(Gn)Lip(f). Then a > 0, and is independent of U.
On the other hand, one can also verify that

Omax(Xi) = [ Xill < I + ahuGn Lol + ha[bll|Gn [ Lip(f),

by denoting @ = ||I + ahtGrLy|| + he|b|||Gr||Lip(f), we know @ is also independent
of U.
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We now apply Lemma to DF(U) with omin(X;) > a and onax(X;) < @.
Together with (BI1)) and (B:12), we have

1 = _ _
omin(DE(U)) 2 . Tmax(DEU)) < (L + @)l 7.
(2 at) e
Since a, @, ||.#| and ||.# || are all independent of U, we are done. O

To prove Lemma [, we need Lemma [I4l

Lemma 14. Suppose we keep all the assumptions from LemmalG. Let %4, be defined
as in 20), and A be defined as in ZIJ). Then

B )\k(gh)
%) < N, (“%’fv { L+ e (aXie(Gn) Ak(Ln) + bedi(Gn) }> |

Proof of Lemma [[4. Recall that we have

X
-I X

% _ -1 X , X =1 + ahtghﬁh + bhtghjf

-1 X
By Lemma [[3] we have X = Q(I + ahiAg, Az, +bchiAg,)QT, where we have also
used that Gy, £}, commute, and Jy = cI. Here we write Ag,, Az, as the diagonal
matrices which are orthogonally similar to Gy, £, w.r.t. orthogonal matrix Q. It is
not hard to verify that
1

B.13 X< =
(B.13) X = T @ 7 0 =

Now one can compute

-1
X 1 h
X~ X~ Sn
1 x—3 x—2 x—1 (7%
gy, =
lx—Nt x-(Ng=1) x—-(Ng=2) x—1 9n
I Xﬁlgh
x—1 I x~1lg,
x—2 x—1 I x~1lg,
Ix—(Nt—1)  x—(N¢—=2)  x—(N¢=3) | x~1g,
N 7,
Gn
deuo:te aﬁ/‘/(fh.

Similar to the treatment in Lemma [ we estimate ||.4#|| by decomposing .4~ as
N =T X°+JX '+ 20X 24+ ... 4 N 1gx Neml)

where we recall that J is defined as in (BI0); And X° is treated as the identity

matrix.
Then we estimate ||.4|| as

(= (Jvil I7* @ ||>

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



Licensed to AMS.

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 45

Since |A® B|| = ||A||-||B]| for any dimensions of square matrices A, B, using (B.13))
and ||J|| <1 yields

Ne—1 Ne—1
(B.14) A< DI < >0 X F < N
k=0 k=0

On the other hand, we have
G, = X'G, = Q((I + ahyAg, Az, + behiAg,) "Ag, )Q .

If we denote {\x(Gr)}, {Me(Ln)} (1 <k < N2) as the corresponding eigenvalues of
Gn, Ly w.r.t. Q, we know

o Ak (Gn)
(B.15) %]l = | max { 1+ hu(aXe(Gn) M (Ln) + beAi(Gn)) } '

Now combining (B14) and (BI5) and using ||.# %, | < |4 |||, we finish the
proof. O

We now prove Lemma

Proof of Lemma [6l By Lemma [[4] and the fact that [|[DR(-)|| < Lip(R), we have
1D = llbhe-#t = G DR < bhy - |4~ %h] - Lin(R) < bTCa,p.c(he)Lip(R).

Recall that
DF(U) =1+ Dn(U).

Now for any v € R a%, we have
(B.16)
IDE@U)|| = [lv+ DnU)v[| = [lvll = [D(U)[[llv]l. = (1 = bTLip(R)Ca b, (he))|v]]-

Since the right-hand side of (BI6) is independent of U, this will lead to a lower
bound on o, i.e.

0 >1—0b0TC(ap,c(he)Lip(R).
By a similar argument, we have
IDEWU)|| < [lof| + [1Dn@)[[[[v]l < (1 + 0T Cap.c(he)Lip(R))]v]].
This will finally lead to
T <14 bT(ap,c(he)Lip(R).
O

Lemma 15 (Sufficient condition on the unique solvability of F(U) = 0). Suppose
conditions ([A), B), (@) and (D) hold. We pick hy and T = Nihy (Ny € Ny)
satisfying bTLip(R)(ap.c(ht) < 1. Then there exists a unique root of F'.

Proof of Lemma M8 (BI2) leads to

max { /\k(gh) } < !
1<k<NZ | 1+ he(adk(Gr) Ak (L) + beAr(Gr)) bTLip(R)’

which is equivalent to

1
i 4 hy(aMn(Lh) + b bTLip(R).
1§kSNI§g\2(Qh)>O{/\k(Qh) holade(Ln) + c)} > bTLip(R)
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FIGURE 19. Graph of YAr1=1

Since T' > hy, the right-hand side of the above inequality is larger than or equal to
bh;Lip(R). Thus the above inequality yields

(B.17) _ +arp(Lh) + bc} > bLip(R).

15k§Ng}1AI;(gh)>o { Ae(Gn)he

Recall the decomposition of f(u) = cu+(f(u)—cu) = cu+R(u). By (D)), ¢ > 0. We
can then set K = ¢, ¢ = R in Theorem [l Furthermore, (C) implies A\, (Q{ £,Q1) =
Ak (Lp). As a result, (BI7) is equivalent to (33)) in Theorem [, which leads to the

unique existence of the root-finding problem F(U) = 0. O

B.3. Proofs of section [3.3l Before we prove Theorem 8] we need Lemmas [16] [I7]
and [I8]

Lemma 16. Suppose 6 € [0,v/2 — 1), there exist u,k > 0, s.t.
kuW (9) — iQ(u, k,0)? >0,
where U(0) =1 —20 — 6%, Qu,k,0) =1 —u—k|+0(]1 —u| + k).
Proof of Lemma [[6. We note that Q(u,k,0)> < (1 + 0)(|1 — u| + k))? < 2(1 +
0)2((1 — u)? + k?). Then for any u, k > 0, we have
kuW (9) — iQ(u, k,0)%* > kuv(9) — %(1 +0)%2((1 — u)? + k?))
— k(14 6 (g — —ur s k2))

Zku(1+9)2< veo) Vk2+1_1>.

(1+06)2 k

Denote ¢ = ~9_ For any 6 € [0,v/2 — 1), ¢ € (0,1]. As shown in Figure [T it is

(1+6)2 -
not hard to verify that 7”“2:1_1

(1\11332 — kQ‘};l_l > 0 is guaranteed to have a positive solution k > 0. This proves

the lemma.

increases monotonically from 0 to 1 on R. Thus,

O

Lemma 17. Suppose F : R? — R is differentiable on R. Let v € R?. Then, for
any x,y € R?, there exists t, € (0,1) such that
v (F(y) = F(z)) = v DF(z + t,(y — 2))(y — x).

Proof of Lemma [[7. Define h(t) = v' (F(z +t(y — x)) — F(x)). Since h(:) is dif-
ferentiable on (0,1), by mean value theorem, there exists t,, € (0,1) such that
h(1) — h(0) = K/ (ty). O
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Lemma 18. Suppose a positive sequence {ay}r>0 satisfies the following recurrence
inequality

(B18) ak+4+2 — Ak S —d Ak+1, k Z 0
with ® > 0. Then

( 2 )k“ P+ P2+ 4
akS ee——— a + ————
D+ VP2 +4 2

Proof of Lemma [[8. We consider the characteristic polynomial r2 + ®r —1 = 0. It

a()) for k> 1.

.2
has two roots r, = —2+Vei+d V2<I>2+4 >0 and r_ = =2=vei+d V2<D2+4 < 0. Then ¢ = % =
i — 7. Plugging this back to (BI]) yields

1
ag+y2 + <— — 7"+) agp+1 —ap <0, k>0,
T+

which further leads to
1 1
Qpy2 + —app1 <1y (ak+1 + —ak) k>0.
T4+ T4+
Thus, we obtain
1 i 1
(B.19) ag+1+ —ap < (a1 + —ag |, foranyk >0.
T4 T4
Taking the index in (B.I9) as k — 1 and k, one obtains

k-1 1 1
Ty ay + ap | > ap + Ap—1 > Qk;
T4+ T4

& 1 1 1
ry a1+ —ao ) = agt1 + —ax > —ag.
Ty Ty T4+

This yields
k—1 1 k41 1
ag <7y ar+—ap |, and ag <7y a4+ —ag |, k>1.
T4+ T+

Since ry < 1, we finally obtain

k+1

2 D+ VD244

ak§<—) am+ YR} k>
P +V02+4 2

We now prove Theorem [B

Proof of Theorem [§. According to Lemma [I5, under conditions (A]), (B)), (), D),
and

bTCa,b,c(ht)Lip(R) < \/5— 1<1,

it is straightforward to check the unique existence of the root-finding problem
F{U)=0.
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Now we suppose {Uy, Qi } solves 2I6). We write J, = J(Uk, Q) for conve-
nience. Then we want to bound Jx4+1 — Ji from above. We calculate

Qkt1 + Qk)

Tit1 — T =Ukg1 — Uy) - (%(Uk-&-l +Uyg) — U*) + (Qr41 — Q) - ( 5

<(Ug41 — Ug) - (%(Ukzﬂ +U) — U*) + (Qrs1 — Qk) - Qi1

1
=Uk+1 = Uk) - (U = Us) + §\|Uk+1 — Uil]* + (Qr+1 — Qr) - Q1.

The inequality is due to the convexity of the quadratic function [|Q|?. From 2.I6),
we know

Upi1 — Ux = =10 DE(Uy) " (Qrs1 + wrp(F(Uy) — €Qri1))
=~ DE(U) (1 = 56)Qus1 +7F (U))
Qi1 — Qi = 7p(F(Uy) — €Qir1).
Let us define ¥ = wrp and ¢ = Z2. Using F'(U,) = 0, we obtain

Tk+1 — Tk
= —1y(Up = Us) "TDF(Ur) T (1 = 56)Qr41 + FF (Ur))

+ QL (F(UL) = Qi) + 51Uk — Uil
=1y (a(Uk —U.)"DEWL)TF(Us) + (1 = 5) (Ui — Ux) T DE(Ui) T Qg1
’7'2 ~ —~
— oF(Ui) T Qi1 + Q€||Qk+1||2> + 7U||DF(Uk)T((1 — 7€) Qr+1 + FF(UL)|?

= 10 (3Wx = U TDFU) T (F(UK) = F(U) + (1 = 56) Uk = Us) T DE(U)T Qi
(4) (B)

o~ o~ 2 o~ o~
—o(F(Uk) = F(U.) T Qry1 + Q€||Qk+1||2> +U IDF(UL) T (1 —F€)Qri1 +FF(UR))I?.
————— 2
() (D) (E)

By Lemma [I7] term (A) and term (C) are given by
(4) = 3(Ux = U.) ' DE(Uy) " DF (Up,p, ) (U = Us),
(C) = —(Ux — U.) " DF (Ur,w,) " Qi1
where Uy, = U, +vj(Uy — U,) with v, € (0,1), j = 1,2.
Recall that Dﬁ(U) = I+ Dn(U). To simplify the notation, we write
oy = sup {[|Dn(U)]]} .
UeR»

By Lemma [6] we have 7,, < bT'(,p c(h¢)Lip(R). We now estimate term (A) as
(A) =5(Ui — U.)DE(Uy,) " DF Uy, ) (Ui — Us)
=(Uk = U.) " (I + Dn(Ux) ")(I + Dn(Ug,))(Us — Us)
=Ux = U.|® + (Ux = U.) " Dn(Ux) " (Uy = Us) + (Us = Us) " DU,y ) (Us — Us)
+ Uk = U.) " Dn(Ux) " Dn(Us,u, ) (U — U.)
>(1 - 25, —7)||Ux — Us|>.
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We can further estimate the terms (B), (C), and (E) as
(B) = (1 =3€)(Ux — U) " (I + D(Uk)) Q13
(C) = =0(Uk = U) T DF (Ur,)  Qutr = —o(Uk = U) (I + D(Uk.)) T Qutr-
Thus
(B) +(C) =(1 =Fe)(Ux = U) " (I + Dn(Up)) Q41 = 0(Ux = Us) " (I + DUk ,)) " Qi1
(1 =Fe = &) (U = Ua) " Qig1 + (Ur = U2) (1 = F) Du(Us) — eD1(Uk,,)) " Qi1

— 1 =Fe = oll|[Ux — Usll|Qr41ll = (11 = Vel + )79 1Uk — U ||| Qr41
— (11 =7Fe— ol + (11 — 7e| + ) IUx — Ul Qr+1ll -

vl

And

(B) <7*(11 = Fel - |Qr1]l + AN F(UR)I)?
< (11 =Fel - |Qusall + 77Uk — UL
< 20%((1 = 7€) Qr+1]1* + 777Uk, — U.|1*).-

The second inequality on (E) is due to
~ ~ ~ L7d ~
1Pl =IF @) - FOl = | [ (L F@. +sw-v) a
1
:H/ DF(U + s(Uy — U.))(Ux — U.) ds
0

1
< [ e - U ds =avi - U],
0
Combining the estimations on term (A)-(E), we obtain
Tk+1 — Tk
= - (W(l =20y = 7)) |Uk = Us||* = (11 = Fe = ol + (11 = Fel + 0)5) |V — Us ||| Q4|

+ 0| Quar|® = v (@ (1 = 7€) | Qe I” + 777Uk — U*HQ))

(B.20)
Ui — U,
— Uk = Ul | Qusa ) (0 — @) 1T = T
1Qr+1]l
Here
r= (120, - 7)) —%(|1—§e—g|+(|1_%Hg)an)]
0=l 15+ o g |
~2—4
_|7o
O = |: 52(1—56)2]'

Recall that we assume bT'(y p (he)Lip(R) < 6, this leads to 7, < . By Lemma [0]
we also have & < 1+6. Thus, 7(1-27,—7.) > 7(1—20—0%) > 0 as 0 € [0, V2-1).
Hence,

det(I") =o7ve(1 — 27, — 5727)

1 5 _ _
= 71 =Fe = ol + (|1 = Fel + 0)y)*

N 1 N N
>07e(1 =20 = 0%) = (11 = Fe — ol + (|1 = Fe + 0)0)*.
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We denote ¥(0) = 1—20—62 and Q(u, 0,0) = |1 —u— 0|+ (|]1 —u|+ 0)f. Lemma
guarantees that there exist 7, w, ¢, such that (BI6]) holds. The condition (BI6])
leads to det(I') > 0, which guarantees the positive definiteness of T'.

Furthermore, we have I' »= Ay(I")I, where A\o(T") represents the smallest eigen-
value of I" and I is an identity matrix. One can bound A2(I") from below as

(1 - 25, —72) 4 0e — \/(5(1 — 20, — 0.) + 0€)? — 4det (D)
2
4(0¥e(1 =20 — 0%) — (|11 = Fe — o] + (|1 = Fe[ + 0)6)?)
2(7(1 — 25, — 72) + o0 + \/@(1 — 25, — 2) + 0¢)? — 4det(T"))
oye(1 =20 — 6%) — (|1 —Fe — o + (|1 — Fe| + 0)6)*
Y(1 - 26, —72) + oc
_ 9e¥(6) — 39(¢ 0,6)
B 3+ oe '
On the other hand, we have
0 < 72 max{F°5%, |1 — Fe[*}T < (1 4 0)? max{7*(1 + 0)*, |1 — Fe|*} I.

A2 (T) =

>

Thus we have
07e¥(0) — 1Q(Fe, 0,0)?
7+ oe

r—70 - ( —T(1—|—9)2max{§2(1+9)2,1—§€|2}> 1.

denote as C(6,7,¢,0,7)

Plug this estimation to (B:20), we obtain

Ter1 — Ti < —7C0,7,€,0,7) Uk = Uu|® + [|Qr411I).-
Since we set the PDHG step size as
07eP(0) — 12(Fe, 0,0)?
2(3 + 0€)(1 + 0)? max{¥2(1 + ), (1 — 7e)*}’
this guarantees C(6,7,¢€,0,7) > 0.
Furthermore, as a function of 7, 7C(6,7, ¢, o, 7) reaches its maximum value at
T= %?(9,?, €,0,7). We then set (here 7 denotes 7(6,7, €, 0))
1 _ 1 FeW(0) — 1Q(Fe, 0, 0)?)?
O =_7C(0,7€057) = (7e¥(6) ~ a6 0,0) ) :
2 2 2(1+ 0)? max{y*(1 + 0)*, (1 — 7€)*}(7 + 0¢€)*

[I>

0<7<7(0,7,¢0,7)

Thus we have
1
i1 = T < =2 S(|Uk = Udll? + [|Qr411)-

Now we prove the exponential decay of J;. To do so, we sum up the above
inequality at time index k and k + 1 to obtain,

1
T2 — T < —@ - 5(\|Uk+1 — U |? + |Qrr2ll* + Uk — Usl® + |1Qrs1]1?), k>0,

It is not hard to see that the right-hand side of the above inequality is no larger
than —®J;41. Hence,

(B.21) Tit2 = Tk £ —OT11.
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Now, by Lemma [I8] we obtain

k41
2 D+ /P2 44
Tk < (7) J+ e Jo|, fork>1.
D+ /P2 44 2
This concludes our proof. ([
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