
MATHEMATICS OF COMPUTATION
https://doi.org/10.1090/mcom/4097

Article electronically published on July 11, 2025

NUMERICAL ANALYSIS OF A FIRST-ORDER

COMPUTATIONAL ALGORITHM FOR REACTION-DIFFUSION

EQUATIONS VIA THE PRIMAL-DUAL HYBRID GRADIENT

METHOD

SHU LIU, XINZHE ZUO, STANLEY OSHER, AND WUCHEN LI

Abstract. A first-order optimization algorithm has been introduced by Liu,
Liu, Osher, and Li [J. Comput. Phys. 500 (2024), 19 pp.] to solve time-
implicit schemes of reaction-diffusion equations. In this research, we conduct
theoretical studies on this first-order algorithm equipped with a quadratic
regularization term. We provide sufficient conditions under which the proposed
algorithm and its time-continuous limit converge exponentially fast to a desired
time-implicit numerical solution. We show both theoretically and numerically
that the convergence rate is independent of the grid size, which makes our
method suitable for large scale problems. The efficiency of our algorithm has
been verified via a series of numerical examples conducted on various types of
reaction-diffusion equations. The choice of optimal hyperparameters as well
as comparisons with some classical root-finding algorithms is also discussed in
the numerical section.

1. Introduction

Reaction-diffusion equations (RD) are well-known time-dependent partial differ-
ential equations (PDEs). They are originally used to model the density evolution of
chemical systems with local reaction processes in which substances get transformed,
and diffusion processes in which the substances get spread over. Since the same
type of equations describe many systems, the RD equation finds its applications
in broad scientific areas. This includes the study of phase-field models in which
the Allen-Cahn and the Cahn-Hilliard equations [1,3] are used to depict the devel-
opment of microstructures of multiple materials; the research on the evolution of
species distribution in ecology system [39]; the study of the reaction processes of
multiple chemicals [40, 42]; and the modeling and prediction of crimes [45].

Time-implicit schemes are often used when solving RD equations numerically.
This is because in simulations, explicit or semi-explicit schemes are often encoun-
tered with Courant–Friedrichs–Lewy (CFL) conditions, under which the time step
size is restricted to be very small. Conversely, employing time-implicit schemes al-
lows for the use of larger time step sizes, leading to a more efficient computation of

Received by the editor January 24, 2024, and, in revised form, February 14, 2025.
2020 Mathematics Subject Classification. Primary 65M06, 65K10.
Key words and phrases. Reaction diffusion equations, time-implicit schemes, primal-dual hy-

brid gradient algorithm, Lyapunov analysis.
The first and second authors were partially funded by AFOSR YIP award No. FA9550-23-1-

0087. The first, second, and third authors were partially funded by AFOSR MURI FA9550-18-
502 and ONR N00014-20-1-2787. The fourth author was supported by AFOSR YIP award No.
FA9550-23-1-0087, NSF DMS-2245097, and NSF RTG: 2038080.

c©2025 American Mathematical Society

1

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/mcom/
https://doi.org/10.1090/mcom/4097

2 S. LIU, X. ZUO, S. OSHER, AND W. LI

the equilibrium state in RD equations. Moreover, computing RD equations with a
weak diffusion and a strong reaction term is of great interest to the computational
math community. The performance of explicit and semi-implicit schemes could
be unstable under these circumstances. However, it has been shown that implicit
schemes still work very well on these models [35, 50]. In addition, time-implicit
schemes are also known to be energy-stable [50].

In a recent work [35], the primal-dual hybrid gradient (PDHG) algorithm, which
is an easy-to-implement optimization algorithm, has been used for computing the
time-implicit solution of RD equations. The PDHG algorithm (1.6) is a first-order
optimization algorithm with tunable hyperparameters. Notably, it does not re-
quire computing the inverse of the Jacobian matrix in the time-implicit scheme.
It converges robustly regardless of the choice of the initial value, which is a key
distinction from many classical methods, such as Newton’s methods. This property
makes the PDHG algorithm easy to implement and computationally efficient for
solving nonlinear equations. Another motivating feature of the PDHG method is
that it allows for the design of customized preconditioning matrices based on the
structure of the specific RD equation, resulting in a notable grid-size-independent
convergence rate throughout the algorithm.

Nevertheless, the prototype PDHG algorithm presented in [35] faces theoretical
and practical challenges. The time-implicit scheme results in a nonlinear equation,
and the PDHG algorithm introduces nonlinear coupling in both the primal and
dual variables. In addition, there is a lack of convergence analysis for the proposed
PDHG algorithm. Furthermore, the nonlinearity inherent in RD equations poses
a challenge in resolving the optimal choice of hyperparameters. In this paper,
we provide the convergence study of the PDHG algorithm for computing the time-
implicit scheme of RD equations. We also present a series of numerical experiments
on the choices of hyperparameters.

Let us consider the general form of the RD equation on a region Ω ⊂ Rd with
prescribed boundary (e.g., periodic, Neumann, or Dirichlet) and initial conditions.

(1.1)
∂u(x, t)

∂t
= −G(aLu(x, t) + bf(u(x, t))), x ∈ Ω, u(·, 0) = u0(·).

Here we assume L,G are self-adjoint, nonnegative definite linear operators. f(·) is
the reaction term (usually nonlinear). a ≥ 0 is the diffusion coefficient. And b ≥ 0
is the reaction coefficient. To compute the numerical solution of (1.1), we adopt
the following time-implicit scheme with a time step size ht > 0 and solve for the
numerical solution on Nt intervals:

(1.2)
ut+1 − ut

ht
= −G(aLut+1 + bf(ut+1)), 0 ≤ t ≤ Nt − 1.

Assume that at each time step, the numerical solution ut belongs to a certain
Hilbert space X with an inner product (·, ·). Let us denote u=[u1, . . . , ut, . . . , uNt]�

∈ XNt . Define the function F(·) : XNt → XNt as

(1.3) F(u) = [. . . , ut+1 − ut + htG(aLut+1 + bf(ut+1)), . . .]�0≤t≤Nt−1.

Then, solving the time-implicit scheme (1.2) is equivalent to obtaining the root of
the problem F(u) = 0.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 3

We now reformulate the time-implicit scheme (1.2) as an inf-sup problem with
a tunable parameter ε¿0 following the treatment in [56]

inf
u∈XNt

sup
p∈XNt

(p,F(u)) − ε

2
‖p‖2XNt .(1.4)

Here we write p = [p1, . . . , pt, . . . , pNt
] ∈ XNt . Compared with the saddle point

scheme considered in [35], a quadratic regularization term is introduced in (1.4) to
enhance the performance of the proposed algorithm both theoretically and numer-
ically. It is not hard to verify that (1.4) is equivalent to the residue-minimizing
problem inf

u

1
2ε‖F(u)‖2XNt

, and we further point out that the saddle point of this

inf-sup problem (1.4) exists and solves F(u) = 0 whenever the root-finding problem
admits a unique solution.

As demonstrated in [35], we deal with the inf-sup saddle problem by applying
the primal-dual hybrid gradients (PDHG) algorithm [7, 54]. We further substitute
the proximal step of variable u with an explicit update to obtain

pn+1 =
1

1 + ετP
(pn + τPF(un)) ,

p̃n+1 =pn+1 + ω(pn+1 − pn),

un+1 =un − τUDF(un)∗p̃n+1.

(1.5)

Here ω > 0 is the extrapolation coefficient, and τP , τU > 0 are PDHG step sizes.
DF(u) is a linear operator on XNt , which denotes the Fréchet derivative of F(·) at
u. DF(u)∗ is the adjoint operator of DF(u) on XNt . It is not hard to verify that
the equilibrium state of PDHG scheme (1.5) is the desired (u∗, 0) with F(u∗) = 0
whenever DF(u)∗ is invertible for arbitrary u ∈ XNt .

The PDHG algorithm (1.5) converges slowly when F(·) possesses a large condi-
tion number. To improve the convergence speed, it is necessary to consider precon-
ditioning F(·). We consider an invertible linear operator M : XNt → XNt , where
M is extracted from the linear part of F(·). Then we introduce the preconditioned

functional F̂(u) = M−1F(u). We apply the PDHG algorithm (1.5) to F̂(u) = 0 to
obtain

pn+1 =
1

1 + ετP
(pn + τPM

−1F(un)),

p̃n+1 =pn+1 + ω(pn+1 − pn),

un+1 =un − τUDF(un)∗(M−1)∗p̃n+1.

(1.6)

The above treatment (1.6) will significantly improve the algorithm’s convergence
speed while leaving the equilibrium state invariant.

It is worth noting that the original approach proposed in [35] solves the implicit
scheme (1.3) while preserving the time causality: the algorithm sequentially com-
putes ut at each time step, using the previous solution as the initial condition. In
contrast, our approach generalizes by accumulating multiple time steps into a single
root-finding problem and computing the multi-step solution in a forward manner.
More precisely, we solve F(uj) = 0 for sequential blocks of solutions, where each
block is defined as:

uj =
[
uj·Nt+1, . . . , uj·Nt+t, . . . , uj·Nt+Nt

]� ∈ XNt , j = 0, 1, 2,

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

4 S. LIU, X. ZUO, S. OSHER, AND W. LI

When updating from uj to uj+1, we set u0 = uj·Nt+Nt as the initial condition
in (1.2). Unlike step-by-step update, the new approach preserves time causality
among solution blocks uj ,uj+1.

In this paper, we analyze the aforementioned preconditioned PDHG algorithm
(1.6) to establish sufficient conditions under which the method is guaranteed to
converge. We remark that there are two types of convergence analysis, which may
cause confusion in this manuscript. One refers to the convergence of the numerical
solution to the real solution as the number of grid points increases; the other one
refers to the convergence of (un,pn) to the equilibrium state of the PDHG algorithm
(1.6) as n increases. In this research, we mainly focus on analyzing the second type
of convergence. We now briefly summarize the main contributions:

• (Theoretical aspect) Suppose that the reaction term f(·) is Lipschitz. As-
sume that the discretization of the differential operators Lh,Gh is positive-
definite, self-adjoint, and commute. We establish the following theoretical
results for our algorithm.
(1) We study the PDHG flow (3.5), which is the time-continuous limit

of (2.16) as τU , τP → 0, (1 + ω)τP → γ > 0. We give conditions
on ht, Nt under which we can pick γ, ε such that the residual term
exponentially decays to 0. The convergence results for general RD
equations are discussed in Theorem 5 and Theorem 7; We establish
convergence rates that are independent of the grid-size Nx for both
Allen-Cahn type and Cahn-Hilliard type equations in Corollary 7.1.

(2) We analyze the convergence speed of the PDHG method (2.16) in The-
orem 8. We show that under certain conditions of ht, Nt, we are able
to select suitable hyperparameters τU , τP , ω, ε that guarantee the ex-
ponential convergence of the L2 error term. We establish convergence
rates that are independent of the grid-size Nx for both Allen-Cahn
type and Cahn-Hilliard type equations in Corollary 8.1.

• (Numerical aspect) In sections 3.2.2 and 3.3 we justify our theoretical re-
sults stated above. In section 4.1, we demonstrate the effectiveness of our
algorithm on different RD equations, including the standard Allen-Cahn
and Cahn-Hilliard equations, as well as equations with variable mobility
terms or higher-order diffusion terms whose linear operator M (cf. (2.13))
cannot be directly inverted. In section 4.1.5, we validate that the conver-
gence rate of our method is independent of the grid size Nx. In section
4.3, we investigate the optimal or at least near-optimal hyperparameters
of our algorithm for achieving efficient performance. We demonstrate the
efficiency of our method by comparing it with some of the classical methods
in section 4.4 and section 4.5.

There exist plenty of references regarding the numerical schemes for RD equa-
tions, which include studies on finite difference methods [6, 11, 15, 24, 25, 29, 38, 43,
44, 50, 52], and finite element methods [19, 20, 25, 31–34, 53]. A series of bench-
mark problems [12, 27] has also been introduced to verify the effectiveness of the
proposed methods. Recently, machine learning or deep learning algorithms such
as deep-learning-based backward stochastic differential equations (BSDE) [22, 23],
physics-informed neural networks (PINNs) [41,49,51], and Gaussian processes [10]
have also been applied to deal with various types of nonlinear equations including
the RD equations.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 5

The primal-dual hybrid gradients (PDHG) method was first introduced in [7,
54] to deal with constrained optimization problems arising in image processing.
This method later finds its applications in various branches such as nonsmooth
PDE-constrained optimization [13], Magnetic resonance imaging (MRI) [48], large-
scale optimization problems including image denoising and optimal transport [26],
computing gradient flows in Wasserstein-like transport metric spaces [4, 5, 19], as
well as design fast optimization algorithms [56], etc.

In [16], the authors introduce damping terms to the wave equation to achieve
faster stabilization, which resembles the time-continuous limit (the PDHG flow)
(3.5) of our proposed algorithm. However, [16] focuses on the linear case while our
research deals with nonlinear RD equations. In recent work [9], the authors conduct
certain transformations to enhance the convergence of a saddle point algorithm.
Although the transformed algorithm shares similarities with our method, the target
functionals considered in both researches are distinct. In [8], the authors apply the
splitting method to propose an accelerating algorithm for the root-finding problem
A(x) = 0, where A can be decomposed as the sum of the gradient function and
the skew-symmetric operator. In contrast, our proposed method deals with a time-
dependent root-finding problem, which generally cannot be cast into the settings of
[8]. We refer our readers to [35] for more detailed discussions on related references.

Our research is inspired by [36] in which the authors apply the PDHG algorithm
to compute time-implicit conservation laws. Our former research [35] mainly focuses
on the conceptual and experimental aspects of the PDHG method applied to RD
equations. In addition, the primal-dual method also finds its application in the
computation of Hamilton-Jacobi equations [37]. The aforementioned works [35–37]
do not address the convergence speed of the PDHG algorithm. In this work, we
establish the convergence guarantee for the nonlinearly coupled primal-dual system.
Moreover, we prove a convergence property of our method, where the convergence
rate is independent of the space grid size.

This paper is organized as follows. In section 2, we provide a detailed derivation
of our algorithm applied to RD equations. In section 3.1, we establish the existence
and uniqueness result regarding the time-implicit scheme of the RD equation. In
section 3.2, we focus on the PDHG flow, which is the time-continuous limit of the
proposed algorithm. We first establish convergence results for the general root-
finding problem and then apply our theory to the time-implicit schemes of RD
equations. In section 3.3, we prove exponential convergence of our algorithm. We
also investigate necessary conditions that guarantee such convergence. In section
4, we demonstrate the effectiveness of our method on different types of RD equa-
tions and make comprehensive comparisons with the IMEX scheme as well as some
classical root-finding algorithms.

2. Derivation of the method

In this section, we give a detailed derivation of the PDHG method when applied
to the reaction-diffusion (RD) equation (1.1). From now on, we assume that the
domain Ω = [0, L]2 is a square region.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

6 S. LIU, X. ZUO, S. OSHER, AND W. LI

Suppose we solve (1.1) on the time interval [0, T]. We divide the time interval
into Nt subintervals, and divide the domain Ω into Nx ×Nx grids. Applying time-
implicit finite difference scheme yields

(2.1)
ut+1 − ut

ht
= −Gh(aLhut+1+bf(ut+1)), for t = 0, 1, . . . , Nt, with u0 given.

Denote ht = T
Nt

, and hx = L
Nx

. Write U t ∈ RNx×Nx as the numerical solution at

the t−th time node. We denote Gh,Lh as N2
x ×N2

x matrices, which represents the
discretization of the operator L,G w.r.t. the spatial step size hx and the boundary
condition.

Remark 1 (Allen-Cahn and Cahn-Hilliard equations). For Allen-Cahn equation [1],
we have G = Id, L = −Δ; for Cahn-Hilliard equation [3], we have G = −Δ, L = −Δ.
And f(·) = W ′(·) where W (ξ) = 1

4 (ξ2 − 1)2 is the double-well potential for both
equations. We can impose periodic or homogeneous Neumann boundary conditions
for both equations. Furthermore, suppose we apply the central difference scheme to
discretize the Laplace operator Δ. We obtain ΔP

hx
= INx

⊗LapP
hx

+LapP
hx

⊗INx
for

periodic boundary condition, and ΔN
hx

= INx
⊗ LapN

hx
+ LapN

hx
⊗ INx

for Neumann
boundary condition, where ⊗ is the Kronecker product and we define
(2.2)

LapP
hx

=
1

h2
x

⎡⎢⎢⎢⎢⎢⎣
−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2

⎤⎥⎥⎥⎥⎥⎦ , LapN
hx

=
1

h2
x

⎡⎢⎢⎢⎢⎢⎣
−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1

⎤⎥⎥⎥⎥⎥⎦.

2.1. PDHG method for preconditioned root-finding problem. In this sec-
tion, we provide a more detailed derivation for our algorithm.

Let us treat X = RN2
x . We denote U = [u1�, . . . , uNt

�
]� ∈ RNtN

2
x as the numer-

ical solution. Lh,Gh indicate the discrete approximations of L,G. We formulate
the time-implicit scheme (2.1) as a root-finding problem

(2.3) F (U) = 0,

with F : RNtN
2
x → RNtN

2
x defined as

(2.4) F (U) = DU + htGh(aLhU + bf(U)) − V.

Here we denote the time difference matrix D = DNt
⊗ Ix, where Ix is the identity

matrix on RN2
x , and

(2.5) DN =

⎡⎢⎢⎢⎢⎢⎣
1
−1 1

−1 1
. . .

. . .

−1 1

⎤⎥⎥⎥⎥⎥⎦ is an N ×N matrix.

On the other hand, we define

(2.6) Gh = It ⊗ Gh, Lh = It ⊗ Lh,

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 7

with It representing the identity matrix on RNt . The reaction function f(·) acts

element-wisely on vector U . The constant vector V ∈ RNtN
2
x depends on both the

initial condition and the boundary condition of the equation.

We aim to solve F (U) = 0. In [35], an indicator function ι(u) =

{
0 if u = 0;

+∞ if u
= 0

is introduced to reformulate the root-finding problem as an optimization problem

(2.7) inf
U∈R

NtN
2
x

ι(F (U)),

which can be further reduced to an inf-sup saddle problem

(2.8) inf
U∈R

NtN
2
x

sup
P∈R

NtN
2
x

P�F (U).

Inspired by [56], we replace ι in (2.7) by a milder quadratic function 1
2ε‖ · ‖2 to

obtain

(2.9) inf
U∈R

NtN
2
x

1

2ε
‖F (U)‖2.

By introducing the dual variable P ∈ RNtN
2
x , one can reformulate (2.9) as an inf-sup

problem with a tunable parameter ε,

inf
U∈R

NtN
2
x

sup
P∈R

NtN
2
x

L(U, P) � P�F (U) − ε

2
‖P‖2.(2.10)

We tackle this saddle point problem by leveraging the primal-dual hybrid gradi-
ent (PDHG) algorithm and obtain

Pn+1 =
1

1 + ετP
(Pn + τPF (Un)) ,

P̃n+1 =Pn+1 + ω(Pn+1 − Pn),

Un+1 =Un − τUDF (Un)�P̃n+1.

(2.11)

When DF (U) is nonsingular for arbitrary U ∈ RNtN
2
x , the equilibrium state of the

above discrete dynamic is (U∗, 0) with F (U∗) = 0. As discussed in section 1, a
large condition number of F (·) may significantly slow down the convergence speed
of (2.11). To mitigate this, we consider suitable preconditioning of F (·). Let us
decompose F (U) into its linear part and nonlinear part,

F (U) =DU + htGh(aLhU + bf(U)) − V

=(D + ahtGhLh)U + bhtGh(f(U) + Jf (U − U) + R(U)) − V.(2.12)

Here we assume U is a certain point in RN2
x at which we expand f(U) = f(U) +

Jf (U−U)+R(U). We choose matrix Jf as an approximation of the Jacobian matrix

Df(U) = diag(. . . , f ′(U ij), . . .). We denote R(U) � f(U) − f(U) − Jf (U − U) as
the remainder term.

Remark 2. In practice, we usually choose Jf = Df(ue1) where 1 is the 1−vector,
and ue is one of the stable equilibrium states, i.e. f(ue) = 0. For example, in
Allen-Cahn equation, f(u) = u3 − u, then ue = ±1, we always have f ′(ue) = 2.
Thus, we set Jf = 2I.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

8 S. LIU, X. ZUO, S. OSHER, AND W. LI

By writing

M=D+ahtGhLh+bhtGhJf =

⎡⎢⎢⎢⎣
X
−I X

. . .
. . .

−I X

⎤⎥⎥⎥⎦with X=I+ahtGhLh+bhtGhJf ,

(2.13)

w̃=bhtGh(f(U) − JfU) − V,

we decompose F (U) as MU + bhtGhR(U) − w̃. It is beneficial to consider the
preconditioned function

(2.14) F̂ (U) = M−1F (U) = U + M−1(bhtGhR(U)) − w̃
denote as

= U + η(U).

We discuss the sufficient condition under which M is invertible in Remark 3.

Remark 3 (Invertibility of M). Suppose a, b ≥ 0, Gh, Lh are self-adjoint, non-
negative definite, and commute. Assume Jf = cI with c ≥ 0. Then M is invertible
for any ht > 0. To prove this, it suffices to show that each X is invertible. By similar
arguments of the proof in Lemma 13, it is not hard to verify that X is equivalent
to I + ahtΛGh

ΛLh
+ bchtΛGh

, which is invertible for ht > 0. Here ΛGh
,ΛLh

are
diagonal matrices equivalent to Gh,Lh.

The corresponding root-finding problem F̂ (U) = 0 is equivalent to the original
problem (2.3) whenever M is invertible.

We now apply (2.11) to the inf-sup saddle problem with respect to F̂ (·)

(2.15) inf
U∈R

NtN
2
x

sup
Q∈R

NtN
2
x

L̂(U,Q) � Q�F̂ (U) − ε

2
‖Q‖22.

And our PDHG method with implicit update in Q and explicit update in U yields

Qk+1 =
1

1 + ετP
(Qk + τP (F̂ (Uk)));

Q̃k+1 = Qk+1 + ω(Qk+1 −Qk);

Uk+1 = Uk − τU (DF̂ (Uk)
�Q̃k+1).

(2.16)

We then iterate (2.16) so that {Uk} approaches the desired root U∗. We terminate
the iteration whenever the
∞ norm of the residual term

Res(Uk) = F (Uk)/ht(2.17)

=

[
. . . ,

(
ut+1
k − ut

k

ht
+Gh(aLhut+1

k +bf(ut+1
k))

)�

, . . .

]�
0≤t≤Nt−1

is less than a certain tolerance tol, i.e., ‖Res(Uk)‖∞ < tol.

2.2. Complexity of the algorithm. We apply the Fast Fourier Transform (FFT)
[14, 46] to evaluate the multiplication of Lh,Gh for periodic boundary conditions.
Furthermore, the Discrete Cosine Transform (DCT) [47] can be utilized to handle
the no-flux or more general Neumann boundary conditions. We refer interested
readers to [35] for more details. Thus, computing F (U) requires O(NtN

2
x logNx)

steps of operations. Furthermore, since M is block lower triangular, applying
back substitution together with FFT/DCT to solve the linear system involving M

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 9

requires O(NtN
2
x logNx) steps of operations. Thus, the complexity at each iteration

of our algorithm equals O(NtN
2
x log(Nx)).

2.3. Computing with time causality. As mentioned in section 1, time causal-
ity can be incorporated into the numerical scheme by solving sequential blocks of
numerical solutions:

U j =
[
uj·Nt+1�, . . . , uj·Nt+t�, . . . , uj·Nt+Nt

�
]�

∈ RN2
xNt , j = 0, 1, 2,

More precisely, to compute U j over the j-th time interval [(j−1)·Nt ·ht, j ·Nt ·ht],
the proposed PDHG algorithm is applied to the root-finding problem F (U j) = 0,
with u0 = u(j−1)·Nt+Nt . That is, the initial value is set as the final state from the
previous block U j−1.

From a practical perspective, increasing Nt leads to higher memory consumption.
From a theoretical point of view, as justified in Corollaries 7.1 and 8.1, fixing the
time step size ht while selecting a large Nt may result in an ill-conditioned root-
finding problem, posing challenges to the convergence of the method. In practice,
choosing a moderate Nt (generally not exceeding 5) mitigates these issues and
ensures the efficient performance of the algorithm. Further discussions regarding
hyperparameter selections are provided in section 4.3.

A standard choice of the initial values (U0, Q0) for the PDHG algorithm (2.16)

upon solving F (U j) = 0 is U0 = Ũ j , Q0 = 0, where Ũ j denotes the numerical
solution precomputed using the IMEX scheme with initial condition u(j−1)·Nt+Nt .
A simpler alternative is to set U0 = U j−1, Q0 = 0. Both choices are efficient in
practice as long as Nt is not too large.

2.4. Relation with G-prox PDHG method. The G-prox primal-dual hybrid
gradients algorithm [26] was recently invented to improve the convergence of opti-
mization and root-finding problems. The algorithm can be formulated as

Pk+1 = argmin
P∈R

NtN
2
x

{
1

2τP
‖P − Pk‖2G − L̂(Uk, P)

}
=

1

1 + ετP
(Pk + τPG

−1F (Uk));

P̃k+1 = Pk+1 + ω(Pk+1 − Pk);

Uk+1 = argmin
U∈R

NtN
2
x

{
1

τP
‖U − Uk‖22 + L̂(U, P̃k+1)

}
.

(2.18)

Here we define the G-weighted norm as ‖v‖2G = v�Gv, and pick G = MM�. In
practice, we substitute the following explicit update of Uk for the implicit update,

(2.19) Uk+1 = Uk − τUDF (Uk)
�P̃k+1.

Now, we multiply M� on both sides of (2.18) (but with the third line replaced by
(2.19)) to obtain

M�Pk+1 =
1

1 + ετP
(M�Pk + τPM−1F (Uk));

M�P̃k+1 = M�Pk+1 + ω(M�Pk+1 − M�Pk);

Uk+1 = Uk − τUDF̂ (Uk)
�(M�P̃k+1).

(2.20)

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

10 S. LIU, X. ZUO, S. OSHER, AND W. LI

By denoting Qk = M�Pk and noticing that F̂ (U) = M−1F (U), (2.20) reduces
exactly to (2.16). This verifies the equivalence between the G-prox PDHG algorithm
and our proposed method.

3. Numerical analysis of the proposed method

In this section, we study the numerical convergence properties of the proposed
PDHG algorithm. In section 3.1, we prove the unique solvability of the time-implicit
scheme (2.1) of RD equations. In section 3.2, we study the convergence of the time-
continuous limit of the PDHG algorithm. In section 3.3, we prove the convergence
of the PDHG algorithm.

3.1. Unique solvability of the time-implicit scheme. In this research, we
mainly focus on reaction functions f that belong to the functional space F , where
(3.1)

F =

{
f ∈ C1(R)

∣∣∣∣∣ f can be decomposed as f = V ′ + φ,

where V ∈ C1(R) is convex, and φ ∈ C(R) is Lipschitz

}
.

The space F covers a majority of reaction functions that arise in classical RD
equations such as the Allen-Cahn and the Cahn-Hilliard equations.

Before we present the result, we assume the spectral decomposition of Gh:

(3.2) Gh =
[
Q1 Q2

] [Λ
O

] [
Q�

1

Q�
2

]
,

where Λ = diag(λ1, . . . , λr) is a diagonal matrix with positive entries λ1 ≥ · · · ≥
λr > 0, r = rank(Gh).

Theorem 1 (Existence and uniqueness of (2.3)). Suppose that Gh, Lh used in the
finite difference scheme (2.1) are self-adjoint and positive semi-definite. Assume
Gh has the spectral decomposition as in (3.2). We also assume that f ∈ F , such
that the convex function V satisfies

(V ′(x) − V ′(y), x− y) ≥ K|x− y|2,
for some K ≥ 0. If the time step size ht in (2.1) satisfies

(3.3) λmin

(
Λ−1

ht
+ a Q�

1 LhQ1

)
+ bK > b Lip(φ),

then the root-finding problem (2.3) admits a unique solution.

The proof of Theorem 1 is deferred to Appendix A.1.

Remark 4. The condition (3.3) can be simplified for some specific equations.

• (Allen-Cahn equation with periodic boundary condition) G = Id,L = −Δ,

f(x) = x3 − x. We set Gh = IN2
x
, and Lh = −ΔP

hx
= INx

⊗ (−LapP
hx

) +

(−LapP
hx

)⊗INx
, where LapP

hx
is defined in (2.2). In this case, the condition

(3.3) yields ht <
1
2b .

• (Cahn-Hilliard equation with periodic boundary condition) G = −Δ, L =
−Δ, f(x) = x3 − x. We set Gh = Lh = −ΔP

hx
. A sufficient condition for

(3.3) is ht <
a2

b2 .

Similar results regarding both Allen-Cahn and Cahn-Hilliard equations have also
been done in [50]. Theorem 1 applies to general RD equation (1.1). We refer
interested readers to Appendix A.2 for more detailed discussions.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 11

3.2. Lyapunov analysis for the PDHG flow. We are ready to present the
main result of this paper. In subsection 3.2.1, we first prove the convergence of the
time-continuous limit of the PDHG algorithm (2.16) for the general root-finding
problem. In subsection 3.2.2, we apply the previous theory to the time-implicit
scheme of RD equations. In subsection 3.2.3, we provide numerical justifications
for the theoretical study. To alleviate the notation, we denote ‖ · ‖ as the 2−norm
for both vectors and matrices in the following discussion.

3.2.1. Convergence analysis for the general root-finding problem. Firstly, we estab-

lish the convergence result for a general root-finding problem F̂ (U) = 0 regardless

of the exact form of F̂ (U). Our main results are summarized in Lemma 2 and
Theorem 3.

Recall (2.16), we substitute Q̃k+1 with

Q̃k+1 = Qk + (1 + ω)(Qk+1 −Qk)

= Qk + (1 + ω)τP

(
− ε

1 + ετP
Qk +

1

1 + ετP
F̂ (Uk)

)
=

(
1 − (1 + ω)τP ε

1 + ετP

)
Qk +

(1 + ω)τP
1 + ετP

F̂ (Uk).

Then, the PDHG iteration (2.16) can be formulated as

Qk+1 −Qk

τP
= − ε

1 + ετP
Qk +

1

1 + ετP
F̂ (Uk);

Uk+1 − Uk

τU
= −DF̂ (Uk)

�
((

1 − (1 + ω)τP ε

1 + ετP

)
Qk +

(1 + ω)τP
1 + ετP

F̂ (Uk)

)
.

(3.4)

Suppose we send the step sizes τU , τP → 0, and keep ω increasing such that (1 +
ω)τP → γ > 0. Then the above time-discrete dynamic will converge to the following
time-continuous dynamic of (Ut, Qt) which we denote as the “PDHG flow”.

(3.5)

{
Q̇ = −εQ + F̂ (U),

U̇ = −DF̂ (U)�((1 − γε)Q + γF̂ (U)).

We introduce two notations that will be commonly used in the following discussion,

σ = inf
U∈R

NtN
2
x

{σmin(DF̂ (U))} = inf
U∈R

NtN
2
x

{σmin(I + bhtM
−1GhDR(U))},(3.6)

σ = sup
U∈R

NtN
2
x

{σmax(DF̂ (U))} = sup
U∈R

NtN
2
x

{σmax(I + bhtM
−1GhDR(U))},(3.7)

where σmin(A)(σmax(A)) denotes the minimum (maximum) singular value of matrix
A. The condition number is defined by

(3.8) κ = σ/σ.

We consider the following Lyapunov function of (U,Q) associated with a param-
eter μ > 0,

(3.9) Iμ(U,Q) =
1

2
‖F̂ (U)‖2 +

μ

2
‖Q‖2.

The parameter μ enables us to establish the exponential decay of Iμ(Ut, Qt) along
the PDHG flow whenever 0 < σ ≤ σ < ∞. We have Lemma 2.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

12 S. LIU, X. ZUO, S. OSHER, AND W. LI

Lemma 2 (Exponential decay of Iμ(Ut, Qt)). Suppose that 0 < σ ≤ σ < ∞. We
pick the parameter μ > 0 satisfying

(3.10)
1

σ
− 1

σ
<

2
√
μ
.

Furthermore, we choose γ, ε > 0 satisfying

(3.11) max

{(
1 −

√
μ

σ

)2

,

(
1 −

√
μ

σ

)2
}

< γε <

(
1 +

√
μ

σ

)2

.

Under the above choices of μ, γ and ε, let (Ut, Qt) be the solution to the PDHG
flow (3.5) with arbitrary initial condition (U0, Q0). Then we have

Iμ(Ut, Qt) ≤ exp

(
− 2β t

max{1, μ}

)
Iμ(U0, Q0).

Here we denote

β = min
z∈[σ2,σ2]

{ϕμ,γ,ε(z)} > 0,

with ϕμ,γ,ε(z) = 1
2 (γz + με−

√
(γz − με)2 + (μ− (1 − γε)z)2).

We defer the proof of Lemma 2 to Appendix B.1. Lemma 2 provides a sharp
convergence rate for Iμ(Ut, Qt). However, β does not take an explicit form. In
Theorem 3, we relax the bound in Lemma 2 to obtain an explicit convergence rate

for ‖F̂ (Ut)‖.

Theorem 3 (Exponential decay of the residual ‖F̂ (Ut)‖). Assume that (Ut, Qt)
solves (3.5) with an arbitrary initial position (U0, Q0). Then, as long as σ is bounded
away from 0 and σ is finite, one can always pick suitable parameters γ, ε such

that the residual ‖F̂ (Ut)‖ decays exponentially fast to 0. In particular, if we set
ε = (1 − δ)κ and γ = 1−δ

κ with |δ| < 1
κ , then we have

‖F̂ (Ut)‖2 ≤ exp

(
−(1 − κ|δ|)(3 − δ)

min{σ2, 1}
8κ

t

) √
‖F̂ (U0)‖2 + σ2‖Q0‖2.

The proof is provided in Appendix B.1. We can further improve the convergence
rate by fixing γε = 1 in Theorem 11 of Appendix B.1.

3.2.2. Convergence analysis for our specific root-finding problem (2.14). In this sec-
tion, we discuss the exponential decay of the PDHG flow (3.5) when it is applied
to the time-implicit scheme (2.1) of the RD equation (1.1) when the reaction term
f(·) is Lipschitz. The main results of this section are Theorem 7 and Corollary 7.1.

Before demonstrating our result, we list several conditions regarding equation
(1.1) and its numerical scheme (2.1). These conditions will be used later.

(1) Suppose the coefficients a, b are nonnegative, i.e.,

(A) a ≥ 0, b ≥ 0.

(2) Assume that

(B) f(·) is Lipschitz with constant Lip(f).

(3) In the numerical scheme (2.1) of (1.1), suppose
(C)
Lh,Gh are self-adjoint, nonnegative definite, and commute, i.e., GhLh = LhGh.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 13

(4) Recall Jf mentioned in (2.12). We assume

(D) Jf is a constant diagonal matrix cI with c ≥ 0.

Remark 5. We point out that many reaction-diffusion equations do not possess
Lipschitz reaction terms f(·): Double-well polynomial potential in the phase field
model, as well as logarithmic Flory-Huggins potential, does not yield Lipschitz
reaction functions [18, 28]. However, the Lipschitz assumption can still be applied
if one can prove an a priori estimation on
∞ norm of the numerical solution Uk

for all PDHG iteration k. This may serve as our future research topic.

As stated in Theorem 3, we need σ > 0 and σ < ∞ in order to establish the

exponential decay of ‖F̂ (U)‖. Lemma 4 provides a sufficient condition for this to
hold.

Lemma 4. Suppose (A), (B), (C) hold. When ht < 1
|b|λmax(Gh)Lip(f)

, we always

have σ > 0 and σ < ∞.

We prove Lemma 4 in Appendix B.2. Combining Theorem 3 and Lemma 4 leads
to Theorem 5.

Theorem 5 (First convergence result of ‖F̂ (Ut)‖). Consider the RD equation (1.1)
on [0, T]. Suppose (A), (B) and (C) hold. We apply the PDHG flow (3.5) to
solve the time-implicit scheme (2.1) with time step size ht <

1
|b|‖Gh‖Lip(f) . Suppose

γ = 1−δ
κ , and ε = (1 − δ)κ with κ = σ/σ, and |δ| < 1

κ . Then ‖F̂ (Ut)‖ converges
exponentially fast to 0.

Remark 6. It is worth mentioning that we do not assume condition (3.3) of Theorem

1. Then F̂ (U) = 0 might not admit a unique solution, but the exponential decay

of ‖F̂ (Ut)‖ is still guaranteed.

Although Theorem 5 guarantees the exponential convergence of ‖F̂ (Ut)‖ for
arbitrarily large b and T as long as ht, γ, ε are suitably chosen, both the time step
size ht and the convergence rate may depend on the spatial discretization Nx. To
get rid of this dependency, we provide sufficient conditions under which σ and
σ are bounded away from the constants that are independent of Nx. Thus, we
achieve a convergence rate that is independent of Nx. Recall the remainder term
R(U) = f(U) − f(U) −Df(U)(U − U) mentioned in (2.12). We have Lemma 6.

Lemma 6. Consider the reaction-diffusion type equation (1.1) on [0, T]. Suppose
the conditions (A), (B), (C) and (D) hold. Since (B) requires f to be Lipschitz, so
does R. And we denote its Lipschitz constant as Lip(R). Define

ζa,b,c(ht) = max
1≤k≤N2

x

{
λk(Gh)

1 + ht(aλk(Gh)λk(Lh) + bcλk(Gh))

}
,

where λk(Gh), λk(Lh) are the eigenvalues of Gh, Lh which are simultaneously di-
agonalizable by an orthogonal matrix Q. Recall that in (2.14), we have η(U) =
bhtM−1GhR(U) − w̃, then

‖Dη(U)‖ ≤ bTζa,b,c(ht)Lip(R) .

And we also have

σ ≥ 1 − bTζa,b,c(ht)Lip(R), σ ≤ 1 + bTζa,b,c(ht)Lip(R).

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

14 S. LIU, X. ZUO, S. OSHER, AND W. LI

We prove Lemma 6 in Appendix B.2. A direct corollary of Lemma 6 and
Theorem 3 is Theorem 7, which not only guarantees the unique solvability of

F̂ (U) = 0, but also establishes exponential convergence for ‖F̂ (Ut)‖.

Theorem 7 (Unique existence of the root and the second convergence result of

‖F̂ (Ut)‖). Suppose conditions (A), (B), (C) and (D) hold. We pick ht and T =
Ntht (Nt ∈ N+) satisfying

(3.12) bTLip(R)ζa,b,c(ht) < 1.

Then there exists a unique root of F̂ . Furthermore, we denote

θ = bTLip(R)ζa,b,c(ht) < 1.

Suppose we set ε = κ− 1
2 and γ = 1

κ − 1
2κ2 . Then we have

(3.13) ‖F̂ (Ut)‖ ≤ exp

(
− 5

32
· (1 − θ)3

1 + θ
t

)√
‖F̂ (U0)‖2 + (1 + θ)‖Q0‖2.

Proof. The unique existence of the root for F̂ (·) is due to Lemma 15.
We now prove the exponential convergence (3.13). According to Lemma 6, by

letting θ = bTLip(R)ζa,b,c(ht), we obtain

(3.14) σ ≥ 1 − θ, σ ≤ 1 + θ, and thus κ ≤ 1 + θ

1 − θ
.

Now recall Theorem 3. To alleviate our discussion, we choose δ = 1
2κ . After setting

the parameters ε = κ− 1
2 and γ = 1

κ − 1
2κ2 , we have

‖F̂ (Ut)‖ ≤ exp

(
−1

2
(3 − 1

2κ
)
min{σ2, 1}

8κ
t

) √
‖F̂ (U0)‖2 + σ2‖Q0‖2

≤ exp

(
−1

2
· 5

2
· (1 − θ)3

8(1 + θ)
t

)√
‖F̂ (U0)‖2 + (1 + θ)‖Q0‖2

= exp

(
− 5

32
· (1 − θ)3

1 + θ
t

)√
‖F̂ (U0)‖2 + (1 + θ)‖Q0‖2,

where the second inequality is due to (3.14) and the fact that κ ≥ 1. �

We can simplify condition (3.12) for specific types of RD equations. This is
summarized in Corollary 7.1.

Corollary 7.1 (Nx-independent convergence rate for specific RD equations). Sup-
pose the conditions (A), (B), (C) and (D) hold. We pick T = Ntht (Nt ∈ N+)
such that

• (Allen-Cahn type, Gh = I, Lh is self-adjoint, nonnegative definite) T <
1

bLip(R) , or equivalently, pick ht <
1

bLip(R) and Nt ≤
⌊

1
bLip(R)ht

⌋
. We denote

θ̃ = bLip(R)T < 1.
• (Cahn-Hilliard type, Gh = Lh are self-adjoint, and nonnegative definite)

T < 2
√
aht+bcht

bLip(R) , or equivalently, pick ht<
4a

b2(Lip(R)−c)2+
and Nt≤

⌊
2
√

a/ht+bc

bLip(R)

⌋
.

We denote θ̃ = bLip(R)T

2
√
aht+bcht

< 1.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 15

Suppose further that ε = κ − 1
2 and γ = 1

κ − 1
2κ2 , then ‖F̂ (Ut)‖ convergences to 0

exponentially fast,

(3.15) ‖F̂ (Ut)‖ ≤ exp

(
− 5

32
· (1 − θ̃)3

1 + θ̃
t

)√
‖F̂ (U0)‖2 + (1 + θ̃)‖Q0‖2.

Proof. Recall that we have θ = bTLip(R)ζa,b,c(ht). We prove θ̃ ≥ θ under both
cases.

• (Allen-Cahn type) Note that ζa,b,c(ht) = maxk

{
1

1+ht(aλk(Lh)+bc)

}
≤ 1.

Thus,

θ = bTLip(R)ζa,b,c(ht) ≤ bTLip(R) = θ̃.

• (Cahn-Hilliard type) We have

ζa,b,c(ht) = max
k

{(
1

λk(Gh)
+ htaλk(Lh) + htbc

)−1
}

= max
k

{(
1

λk(Lh)
+ htaλk(Lh) + htbc

)−1
}

≤ 1

2
√
aht + bcht

.

Then,

θ = bTLip(R)ζa,b,c(ht) ≤
bTLip(R)

2
√
aht + bcht

= θ̃.

Since θ̃ < 1 in both cases, we have θ ≤ θ̃ < 1. Applying Theorem 7 yields (3.13).

Note that (1−θ)3

1+θ ≥ (1−θ̃)3

1+θ̃
for 0 ≤ θ ≤ θ̃ < 1. This implies our result (3.15). �

3.2.3. Numerical verification. We apply our algorithm to solve the Allen-Cahn
equation (4.1) with ε0 = 0.01 on a 64 × 64 grid. We use τU = τP = 0.5, ω = 1,
ε = 0.1. At each iteration k, denote Uk as the numerical solution. We define

rk = − log10(‖F̂ (Uk+1)‖/‖F̂ (Uk)‖) to be the convergence rate of the residual term

‖F̂ (Uk)‖ at kth iteration. The residual is expected to converge linearly to 0. We
denote by r̄ the average convergence rate of the first 500 iterations. By (3.15), when

θ̃ is small, the convergence rate is 5
32 (1 − 4θ̃ + O(θ̃2)), which is linear w.r.t. Ntht

(recall that θ̃ ∝ T = Ntht). Such linear relation is verified in the first two figures
of Figure 1. In the third figure, we observe fast decay of the average convergence

rate r̄ as θ̃ ∝ Ntht keeps increasing. Furthermore, we verify the dependence of the
convergence rate on Ntht via the left plot of Figure 4. We also apply our algorithm
to the Cahn-Hilliard equation (4.2) with ε0 = 0.1 on a 64 × 64 grid. We keep the
hyperparameters the same as in the case of Allen-Cahn. The average convergence
rate r̄ is computed by the first 500 iterations of the algorithm. By (3.15), the con-

vergence rate is linear w.r.t. Nt(
√
ht + o(

√
ht)) when θ̃ ∝ Nt

√
ht is small. This is

reflected in Figure 2. Unlike the case of Allen-Cahn, in which the PDHG algorithm

converges as θ̃ increases, the iterations for Cahn-Hilliard diverge as θ̃ ∝ Nt

√
ht

increases. This is reflected on the right plot of Figure 2.
For a fixed time step size ht, denote by Nmax the maximum number of time

steps that guarantees the convergence of the PDHG algorithm. We plot the relation
between Nmax and ht on a logarithmic scale in Figure 3. We observe the relation

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

16 S. LIU, X. ZUO, S. OSHER, AND W. LI

0.001
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

00 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

T=Nt*0.0005ht

P
D

H
G

 re
si

du
al

 c
on

ve
rg

en
ce

 ra
te

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
D

H
G

 re
si

du
al

 c
on

ve
rg

en
ce

 ra
te

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T=Nt*0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

P
D

H
G

 re
si

du
al

 c
on

ve
rg

en
ce

 ra
te

10-3

(A) Plot of r̄ vs ht. Fix Nt = 1, ht = 10−4k, 1 ≤ k ≤ 50 (B) Plot of r̄ vs Nt. Fix ht = 5 × 10−4, 1 ≤ Nt ≤ 20

(C) Plot of r̄ vs Nt. Fix ht = 5 × 10−2, 1 ≤ Nt ≤ 40

Figure 1. Convergence rate of the residual term ‖F̂ (Uk)‖ w.r.t.
ht, Nt for Allen-Cahn equation

Nmax = O(1√
ht

) when the step size ht is not too small. The dependence of the

convergence rate w.r.t. Nt

√
ht is shown in the right plot of Figure 4.

Remark 7. It is worth mentioning that some of the tested values of ht in Figures
2, 3 may have exceeded the theoretical bounds for uniqueness (cf. Remark 4)
and convergence (cf. Corollary 8.1). We point out that these bounds, derived
from ensuring convexity and positive definiteness in the numerical analysis, are
sufficient but not necessary. The figures primarily aim to illustrate the dependence
of convergence rate on Nt · ht and Nt ·

√
ht, rather than strictly adhering to the

bounds.

3.3. Lyapunov analysis for the time-discrete case. In this section, we discuss
the convergence of the time-discrete PDHG algorithm (2.16). Recall that the equi-

librium state of the PDHG dynamic (2.16) is (U∗, 0) with F̂ (U∗) = 0, we consider
the following Lyapunov function

J (U,Q) =
1

2
(‖U − U∗‖2 + ‖Q− 0‖2) =

1

2
(‖U − U∗‖2 + ‖Q‖2).

Theorem 8 provides a sufficient condition on the convergence of J when f(·) is
Lipschitz.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 17

(A) Plot of r̄ vs ht. Fix Nt = 1, ht = 5 × 10−4k, 1 ≤ k ≤ 40 (B) Plot of r̄ vs Nt. Fix ht = 0.005, 1 ≤ Nt ≤ 22

Figure 2. Convergence rate of the residual term ‖F̂ (Uk)‖ w.r.t.
ht, Nt for Cahn-Hilliard equation

Figure 3. Nmax − ht log-log plot for Cahn-Hilliard equation
(4.2). We solve the equation on 64 grid with ht = 0.01 · k,
k = 0.5, 1, 2, . . . , 13. The yellow triangle has slope equal to 1

2 .
The orange dashed line is the linear regression of data points with
rather large ht = 0.01 · k with 5 ≤ k ≤ 11.

Theorem 8 (Exponential convergence of the PDHG algorithm (2.16)). Consider
the following assumptions,

• (On PDE (1.1)) Assume (A), (B) hold.
• (On numerical scheme (2.1) of PDE) Assume (C) holds. Suppose the time

step size ht and T = Ntht satisfy bTLip(R)ζa,b,c(ht) <
√

2− 1. Suppose we

pick θ ≥ bTLip(R)ζa,b,c(ht) with θ <
√

2 − 1.
• (On PDHG algorithm (2.16)) Suppose (D) holds. There exist γ̃ = ωτP , � =

τP
τU

, ε > 0 satisfying

(3.16) �γ̃εΨ(θ) − 1

4
Ω(γ̃ε, �, θ)2 > 0.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

18 S. LIU, X. ZUO, S. OSHER, AND W. LI

Figure 4. Plots of r̄ vs (Nt, ht)

Here we denote Ψ(θ) = 1−2θ−θ2, and Ω(u, �, θ) = |1−u−�|+(|1−u|+�)θ.
We choose PDHG step size for the dual variable as

(3.17) τP =
�γ̃εΨ(θ) − 1

4Ω(γ̃ε, �, θ)2

4(γ̃ + �ε)(1 + θ)2 max{γ̃2(1 + θ)2, (1 − γ̃ε)2} ,

and set the extrapolation coefficient ω = γ̃
τP

, the PDHG step size for U as

τU = τP

 .

Under the above conditions, there exists a unique U∗ s.t. F̂ (U∗) = 0. Furthermore,
assume that {Uk, Qk} solves the PDHG algorithm (2.16) with arbitrary initial con-
dition (U0, Q0). Write Jk = J (Uk, Qk). We have

(3.18) Jk ≤
(

2

Φ +
√

Φ2 + 4

)k+1
(
J1 +

Φ +
√

Φ2 + 4

2
J0

)
,

where

Φ =
(�γ̃εΨ(θ) − 1

4Ω(γ̃ε, �, θ)2)2

2(1 + θ)2 max{γ̃2(1 + θ)2, (1 − γ̃ε)2}(γ̃ + �ε)2
.

The proof of Theorem 8 is provided in Appendix B.3.

We can simplify the results in Theorem 8 for Allen-Cahn and Cahn-Hilliard
type of equations, using similar argument in the proof of Corollary 7.1, for Allen-
Cahn (resp., Cahn-Hilliard) type equations. Suppose bLip(R)T <

√
2 − 1 (resp.,

bLip(R)T

2
√
aht+bcht

<
√

2 − 1). If we set θ = bLip(R)T (resp., θ = bLip(R)T

2
√
aht+bcht

), then we

have bTζa,b,c(ht)Lip(R) ≤ θ <
√

2 − 1.
Furthermore, we can pick specific values of the hyperparameters τU , τP , ω, ε to

obtain a more concise convergence rate Φ. To do so, we denote u = γ̃ε and assume
that u < 1. We set � = 1 − γ̃ε = 1 − u. Then the condition (3.16) leads to

(1 − u)uΨ(θ) − (1 − u)2θ2 > 0, which yields θ2

1−2θ < u < 1. Furthermore, the rate

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 19

Φ equals

Φ =
(1 − u)2(u(1 − 2θ − θ2) − (1 − u)θ2)2

2(1 + θ)2 max{γ̃2(1 + θ)2, (1 − u)2}(γ̃ + (1 − u)ε)2
.

We further pick γ̃ = (1 − u)ε. Together with γ̃ε = u, we have γ̃ =
√
u(1 − u),

ε =
√

u
1−u . Thus,

Φ =
(1 − 2θ)2

8(1 + θ)2
·

(
1 − θ2

1−2θ · 1
u

)2
max{(1 + θ)2, (1 − u)/u} .

Now the value of τP is determined by (3.17), τU = τP

 , ω = γ̃

τP
can also be deter-

mined. In summary, we have Corollary 8.1.

Corollary 8.1 (Nx-independent convergence rate for specific RD equations). Sup-
pose (A), (B), (C), and (D) hold. Assume ht, Nt and T = Ntht satisfy

• (Allen-Cahn type, Gh = I, Lh is self-adjoint, nonnegative definite) Pick

T <
√
2−1

bLip(R) , or equivalently, ht <
√
2−1

bLip(R) , Nt ≤
⌊ √

2−1
bLip(R)ht

⌋
. We denote

θ = bLip(R)T <
√

2 − 1;
• (Cahn-Hilliard type, Gh = Lh is self-adjoint, and nonnegative definite)

Pick T < (
√
2−1)(2

√
aht+bcht)

bLip(R) , or equivalently, ht < 4(
√
2−1)2a

b2(Lip(R)−(
√
2−1)c)2+

,

Nt ≤
⌊
(
√

2 − 1)
2
√

a/ht+bc

bLip(R)

⌋
. We denote θ = bLip(R)T

2
√
aht+bcht

= bLip(R)Nt

√
ht

2
√
a+bc

√
ht

<
√

2 − 1.

Then, there is unique U∗ with F̂ (U∗) = 0. Furthermore, if we choose u ∈ (θ2

1−2θ , 1)
and set

τP =
u(1− 2θ)−θ2

8
√

u(1−u)(1+θ)2 max{u(1+θ)2, 1−u}
, τU =

τP
1−u

, ω=

√
u(1−u)

τU
, ε=

√
u

1−u
,

(3.19)

then Uk converges exponentially fast to U∗, i.e.,

‖Uk − U∗‖2 ≤ C0

(
2

Φ +
√

Φ2 + 4

)k+1

.

Here

C0 =

(
J1 +

Φ +
√

Φ2 + 4

2
J0

)
, Φ =

(1 − 2θ)2

8(1 + θ)2
·

(
1 − θ2

1−2θ · 1
u

)2
max{(1 + θ)2, (1 − u)/u} .

In the following example, we pick the hyperparameters ht, Nt, τU , τP , ω, ε accord-
ing to Corollary 8.1, and apply it to different types of equations. Our algorithm is
guaranteed to converge linearly. The theoretical results presented in Theorem 8 and
Corollary 8.1 are not necessarily the sharpest convergence rate. In practice, the ac-
tual convergence rate of our PDHG method is generally faster than the theoretical
guarantee in Corollary 8.1. This is reflected in Table 1. When composing Table 1,
recall that f(u) = u3−u, we set c = f ′(±1) = 2, and R(u) = f(u)−cu = u3−3u. In
our numerical result, we observe that |U t

ij | ≤ 1 for any spatial index (i, j) and tem-
poral index t. Thus we use sup

u∈[−1,1]

|R′(u)| = 3 as the value of Lip(R) in Corollary

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

20 S. LIU, X. ZUO, S. OSHER, AND W. LI

Table 1. Theoretical convergence rate vs actual convergence rate
of ‖Uk − U∗‖22. The constraints in the parentheses in the columns
of ht, Nt, and u are derived from the conditions in Corollary 8.1.
The actual rate r is solved from the linear regression model r ·k+b
given the numerical data {k, log(‖Uk+1 − U∗‖2/‖Uk − U∗‖2)} for
1 ≤ k ≤ 400 (Allen-Cahn equation (4.1)); and 1 ≤ k ≤ 500 (Cahn-
Hilliard equation (4.2)).

ht Nt u τP τU ω ε θ̃
Theoretical

rate
Actual
rate

ε0 = 1.0
0.005

< 0.1381
20

≤ 27
0.5

u ∈ (0.2250, 1)
0.0498 0.0996 5.0181 1.0 0.3000 0.0112 0.0723

AC (4.1) ε0 = 0.1
0.001

< 0.0138
7

≤ 13
0.5

u ∈ (0.0760, 1)
0.0574 0.1147 4.3587 1.0 0.2100 0.0141 0.0821

ε0 = 0.01
0.0005

(< 0.0014)
1

(≤ 2)
0.5

(u ∈ (0.0321, 1))
0.0936 0.1872 2.6702 1.0 0.1500 0.0307 0.1325

ε0 = 10
0.005

(¡1.4553)
10

(≤ 12)
0.5

(u ∈ (0.04, 1))
0.0842 0.1684 2.9695 1.0 0.1640 0.0260 0.0537

CH (4.2) ε0 = 1.0
0.001

(¡0.1455)
5

(≤ 9)
0.5

(u ∈ (0.0978, 1))
0.0475 0.0949 5.2662 1.0 0.2874 0.0103 0.0301

ε0 = 0.1
0.0005

(¡0.0015)
1

(≤ 1)
0.5

(u ∈ (0.1663, 1))
0.0286 0.0572 8.7392 1.0 0.2741 0.0043 0.0169

(A) ε0 = 1.0 (B) ε0 = 0.1

(C) ε0 = 0.01

Figure 5. Plot of log ‖Uk − U∗‖2 vs k (1 ≤ k ≤ 400) when using
hyperparameters specified in Table 1 to solve Allen-Cahn equation
(4.1) with different ε0 on a 128 × 128 grid

8.1 during the calculation. The corresponding semi-log plots are shown in Figure 5
and Figure 6.

Remark 8. (3.19) may also not be the optimal choice of hyperparameters. We
provide suggestions on selecting the optimal hyperparameters in section 4.3.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 21

(A) ε = 10 (B) ε = 1.0

(C) ε = 0.1

Figure 6. Plot of log ‖Uk − U∗‖2 vs k (1 ≤ k ≤ 500) when us-
ing hyperparameters specified in Table 1 to solve Cahn-Hilliard
equation (4.2) with different ε0 on a 128 × 128 grid

4. Numerical examples

In this section, we test the proposed algorithm on four types of RD equations,
namely the Allen-Cahn equation, the Cahn-Hilliard equation, an RD equation with
variable coefficients (mobility term), and a 6th-order reaction-diffusion equation.
We verify the independence between the convergence rate of our algorithm and the
grid size Nx. We discuss how the hyperparameters of the proposed algorithm are
chosen to achieve the optimal (or near-optimal) performance via numerical exper-
iments. We also provide comparisons between the implicit scheme with adaptive
step size ht and the IMEX scheme on long-time range computation. At the end of
this section, we make comparisons with three commonly used algorithms for resolv-
ing the time-implicit schemes such as the nonlinear SOR [38], the preconditioned
fixed point method [2] and Newton’s method [11].

For all the numerical examples in this section, if not specified, we always set
the hyperparameters ω = 1 and ε = 0.1. We terminate the iteration whenever
‖Res(Uk)‖∞ < tol with tol = 10−6. Here the residual term Res(Uk) is defined in
(2.17). All numerical examples are imposed with periodic boundary conditions. We
adopt the central discretization scheme to discretize the Laplace operator Δ, i.e.,
we set the discretized Laplace operator as LapP

hx
defined in (2.2).

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

22 S. LIU, X. ZUO, S. OSHER, AND W. LI

Figure 7. We solve equation (4.1) with ε0 = 0.01. We set τU =
0.55, τP = 0.95 for our PDHG method. (Left) Comparison between
our method (time-implicit scheme solved by the proposed PDHG
algorithm) and the IMEX scheme. We discrete the space into 128×
128 lattices. We compute both schemes with large time step size
ht = 0.02 and compare with the benchmark solution solved from
the same IMEX scheme with ht = 0.001. Blue curve indicates the
L1 discrepancy between the IMEX solution on the coarser time grid
UIMEX and the benchmark solution U�. Red curve indicates the
L1 discrepancy between the time-implicit solution UPDHG and U�.
(Right) Comparison between the front position of the numerical
solution solved via our PDHG method and the Nonlinear SOR
method, as well as the real front position.

Among four equations discussed in this section, equations (4.1), (4.2), and (4.6)
have already been considered in [35], where more numerical results are demon-
strated. In this research, we mainly use them as test equations for validating our
theoretical findings and justifying the effectiveness of our method.

All the numerical examples are computed using MATLAB on a laptop with 11th
Gen Intel Core i5-1135G7 @ 2.40GHz CPU and 16.0 GB RAM. The correspond-
ing codes are provided at https://github.com/LSLSliushu/PDHG-method-for-

solving-reaction-diffusion-equations/tree/main.

4.1. Tested equations. Throughout this section, we denote the double potential
function W (u) = 1

4 (u2 − 1)2, and thus W ′(u) = u3 − u.

4.1.1. Allen-Cahn equation (AC). We consider the Allen-Cahn equation

(4.1)
∂u

∂t
= aΔu− bW ′(u), on [0, 0.5]2 × [0, T], u(x, 0) = u0(x).

We set a = ε0, b = 1
ε0

with ε0 = 0.01. We set the initial condition as u0 =

2χB(x∗,r) − 1 where x∗ = (0.25, 0.25), r = 0.2. For the precondition matrix M ,

Gh = I, and Lh = ΔP
hx

, and Jf = 2I. We compare our method and the IMEX
method in Figure 7. The zero-level set of the solution u(·, t) of this equation is
known to be the curvature flow of a circle [38]. A comparison among the plots of
the front positions is computed by our method, the Nonlinear SOR method. The
real solution is presented on the right-hand side of Figure 7.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://github.com/LSLSliushu/PDHG-method-for-solving-reaction-diffusion-equations/tree/main
https://github.com/LSLSliushu/PDHG-method-for-solving-reaction-diffusion-equations/tree/main

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 23

Table 2. Centers and radius of the 7 circles

i 1 2 3 4 5 6 7

xi π/2 π/4 π/2 π 3π/2 π 3π/2
yi π/2 3π/4 5π/4 π/4 π/4 π 3π/2
ri π/5 2π/15 π/15 π/10 π/10 π/4 π/4

4.1.2. Cahn-Hilliard equation (CH). We consider the Cahn-Hilliard equation

(4.2)
∂u

∂t
= −aΔΔu + ΔbW ′(u), on [0, 2π]2 × [0, T], u(x, 0) = u0(x).

We set a = ε20 and b = 1. We set the initial condition u0 as a modified indicator
function whose value equals +1 if (x, y) falls inside any of the seven circles and −1
otherwise, i.e.,

u0(x, y) = −1 +

7∑
i=1

ϕ(
√

(x− xi)2 + (y − yi)2 − ri),

where the mollifier function ϕ is defined as

ϕ(s) =

{
2e−

ε2

s2 s < 0

0 s ≥ 0
, with ε = 0.1.

The centers and radii of these seven circles are listed in Table 2. For the precondition
matrix M , Gh = Lh = ΔP

hx
, and Jf = 2I.

4.1.3. A reaction-diffusion equation with variable coefficient (VarCoeff). We con-
sider the following equation with variable coefficient (mobility term) σ(·),

(4.3)
∂u

∂t
= a∇ · (σ(x)∇u) − bW ′(u), on [0, 2π]2 × [0, T], u(x, 0) = u0(x).

We choose a = ε0, b = 1
ε0

with ε0 = 0.01. The media σ(x, y) = 1+ μ
2 (sin2 x+sin2 y)

with μ = 5.0. We set the initial condition u0 = 1
2 (cos(4x)+cos(4y)). We adopt the

following time-implicit scheme

Ut+1
ij − Ut

ij

ht
(4.4)

=
a

h2
x

(σ
i+1

2
,j

(Ui+1,j−Ui,j)−σ
i−1

2
,j

(Ui,j−Ui−1,j)+σ
i,j+1

2
(Ui,j+1−Ui,j)−σ

i,j−1
2
(Ui,j−Ui,j−1))

−bW
′
(U

t+1
ij),

where 0 ≤ t ≤ Nt − 1, 1 ≤ i, j ≤ Nx, and UNx+1,j = U1,j , U0,j = UNx,j ;Ui,Nx+1 =
Ui,1, Ui,0 = Ui,Nx

for all 1 ≤ i, j ≤ Nx. And we set σpq = σ((p − 1)hx, (q − 1)hx)
for any p, q ∈ Q.

For the precondition matrix M , Gh = I, we approximate Lh by −σΔP
hx

, whose
matrix-vector multiplication and inversion can be efficiently computed via the FFT
algorithm. Here σ = 1

|Ω|
∫
Ω
σ(x, y) dxdy = 1 + μ

2 denotes the average of σ over

Ω = [0, 2π]2. We set Jf = 2I. We choose τU = 0.5, τP = 0.95 when applying our
PDHG method to solve the time-implicit scheme (4.4).

The numerical solutions to (4.3) are provided in Figure 8. A series of residual
decay plots throughout our method are demonstrated in Figure 9.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

24 S. LIU, X. ZUO, S. OSHER, AND W. LI

Figure 8. Numerical solution of the time-implicit scheme solved
via our PDHG method on a 256× 256 grid at different time stages
t = 0.0, 0.2, 1.0, 3.6, 10.0, 20.0

Furthermore, we denote

E(u) =

∫
Ω

a

2
σ(x)|∇u(x)|2 + bW (u(x)) dx,

as the free energy functional associated with the reaction-diffusion equation (4.3).
Denote
(4.5)

Ehx
(U)=

∑
1≤i,j≤Nx

(a
2
(σi+ 1

2 ,j
|Ui+1,j − Ui,j |2+ σi,j+ 1

2
|Ui,j+1 − Ui,j |2)+bW (Ui,j)

)
h2
x

as the discrete analogy of E(u). The free energy Ehx
(U tk) versus tk plot of energy

decay is presented in Figure 10. In addition, a comparison between the proposed
scheme and the IMEX scheme can be found in Figure 11.

4.1.4. A 6th-order reaction-diffusion equation (6th-order). We consider the follow-
ing 6th-order Cahn-Hilliard-type equation:
(4.6)
∂u

∂t
= Δ(ε20Δ−(W ′′(u)−ε20)Id)(ε20Δu−W ′(u)), on [0, 2π]2× [0, T], u(·, 0) = u0.

In this example, we choose parameter ε0 = 0.18. We set the initial condition

u0(x, y) = 2esin x+sin y−2 + 2.2e− sinx−sin y−2 − 1.

When we set up the precondition matrix M , we approximate Gh by

Δh(ε20Δh −W ′′(±1) + ε20) = Δh(ε20Δh − 2 + ε20),

and set Lh = ε20Δh. We pick Jf = 2I. We choose τU = 0.5, τP = 0.95 for
our PDHG method. A comparison between our proposed scheme and the IMEX
scheme is provided in Figure 12.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 25

Figure 9. The loss plot of log10(Res(Uk)) vs iteration number k.
We solve (4.3) with ht = 0.002. The plots (from left to right) are
the loss plots at 30th and 90th subinterval.

Figure 10. We compute the free energy on [0, 5]. (Left) Free
energy decay (blue) of the time-implicit scheme (solved by PDHG
method) with ht = 2 · 10−3, and the reference energy decay (red)
solved from IMEX scheme with ht = 10−4. The relative error
between them is plotted in orange. (Right) The log− log plot of
free energy.

4.1.5. Grid-size-free algorithm. As emphasized previously in section 1, the conver-
gence rate of our algorithm is independent of the grid size Nx. This has also been

verified in Corollary 7.1 and Corollary 8.1. (Recall that the quantities θ̃ and θ in
these corollaries are independent of Nx.) In this subsection, we verify such irrel-
evance by testing our algorithm on various types of equations with different grid
sizes Nx. The numerical results are demonstrated in Figure 13, where the number
of iterations required upon convergence directly reflects the convergence rate of our
PDHG algorithm.

4.2. Comparisons with the convex splitting method. The convex splitting
method originally proposed in [15] seeks a specific decomposition of the function
F (·) : Rn → R, such that the semi-implicit time-discrete scheme applied to the

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

26 S. LIU, X. ZUO, S. OSHER, AND W. LI

Figure 11. (Left) Comparison between our method (time-
implicit scheme solved by the proposed PDHG algorithm) and the
IMEX scheme. We discretize the space into a 256 × 256 lattice.
We compute both schemes with large time step size ht = 0.01 and
compare with the benchmark solution solved from the same IMEX
scheme with ht = 0.001. Blue curve indicates the L1 discrepancy
between the IMEX solution on the coarser time grid UIMEX and
the benchmark solution U�. Red curve indicates the L1 discrep-
ancy between the time-implicit solution UPDHG and the benchmark
U�. (Right) Plot of |UPDHG − U�| (up); and plot of |UIMEX − U�|
(down).

Figure 12. Similar to Figure 11. (Left) Comparison between
the L1 discrepancy of our method and the IMEX scheme with
ht = 0.01. (Right) Plot of |UPDHG − U�| (up); and |UIMEX − U�|
(down).

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 27

Figure 13. Relation between the number of iterations needed for
convergence and space discretization Nx. We verify on four differ-
ent equations with Nx = 50, 100, 150, 200, 250. We set ε0 = 0.01
for the Allen-Cahn equation and ε0 = 0.1 for the Cahn-Hilliard
equation.

gradient flow

d

dt
u(t) = −∇F (u(t))

is energy stable. To be more specific, suppose F is splitted as F (u) = Fc(u)−Fe(u),
where Fc, Fe are convex functions on Rn. Here “c” denotes contraction, and “e”
denotes expansion, which indicates the effect of the gradient fields ∇Fc and ∇Fe

in the gradient flow. Consider the scheme

(4.7)
ut+1 − ut

2ht
= −(∇Fc(u

t+1) −∇Fe(u
t)), 0 ≤ t ≤ Nt.

It can be shown that F (ut+1) ≤ F (ut) for all t = 0, 1, 2, . . . , i.e., the numerical
scheme preserves the decaying of energy.

Many RD equations can be interpreted as gradient flows in certain functional
spaces. The convex splitting method has been widely applied to compute these
equations. We refer the readers to [50] and the references therein for more details.
In comparison, we demonstrate that our proposed algorithm, which employs the
PDHG method for solving the time-implicit scheme, offers notable advantages over
the convex splitting methods. Specifically, it achieves higher accuracy in computing
the phase-field models with weak diffusion and strong reaction.

Recall the Allen-Cahn equation (4.1), which can be cast as the L2 gradient flow
of the free energy

∫
Ω

ε0
2 ‖∇u‖2 dx + 1

ε0

∫
Ω
W (u) dx. For the numerical solution,

we adopt the finite difference scheme and consider the discretized energy function1

F (U) = ε0
2

∑
i,j h

2
x‖∇hx

Uij‖2 + 1
ε0

∑
i,j h

2
xW (Uij). Following the discussion in [21],

we decompose the double-well potential W (u) = 1
4 (u2 − 1)2 = Wc(u) − We(u) in

1Here we denote discrete gradient ∇hxUij := (
Ui+1,j−Ui−1,j

hx
,
Ui,j+1−Ui,j−1

hx
).

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

28 S. LIU, X. ZUO, S. OSHER, AND W. LI

Figure 14. Comparison between the time implicit scheme and the
convex splitting scheme: (Left) We discrete the space into 128×128
lattices. Similar to Figure 7, we compute both schemes with rather
large time step size ht = 0.02 and plot the L1 discrepancy curve
versus time (with the benchmark solution solved from the IMEX
scheme with ht = 0.001). (Right) We discretize the space into
256 × 256 lattices, pick ht = 0.005, and plot the front position
versus time for different numerical schemes.

two ways2:

(A) Wc(u) =
1

2
u2, We(u) = −1

4
u4 +

3

2
u2 − 1

4
;

(B) Wc(u) =
1

4
u4 +

1

4
, We(u) =

1

2
u2.

One then considers Fc(U) = ε0
2

∑
i,j h

2
x‖∇hx

Uij‖2+ 1
ε0

∑
i,j h

2
xWc(Uij) and Fe(U) =

1
ε0

∑
i,j h

2
xWe(Uij). The convex split scheme (4.7) yields

(4.8) (I − ε0htΔhx
)U t+1

ij +
ht

ε0
W ′

c(U
t+1
ij) = U t

ij +
ht

ε0
W ′

e(U
t
ij), 0 ≤ t ≤ Nt.

It is worth mentioning that (4.8) reduces to a linear equation if Wc(·) is quadratic.
Otherwise, (4.8) is a nonlinear root-finding problem and the proposed PDHG algo-
rithm can be applicable here to resolve for U t+1.

We apply (4.8) using splitting schemes (A) and (B) to 4.1 with ε0 = 0.01 and
compare the results with the time-implicit scheme. The numerical results are pre-
sented in Figure 14. As shown in the results, a small ε0 in this phase-field model
poses a challenge for the convex splitting methods, as they are unable to accurately
capture the movement of the zero-level set of u(·, t). In contrast, the time-implicit
scheme maintains computational accuracy. Further comparisons between the time-
implicit scheme and the convex splitting method can be found in [50].

2Although We(·) for scheme (A) is not convex on R, it is convex on the finite interval [−1.7, 1.7].
This remains a reasonable splitting as long as Ut

ij lies in this interval for arbitrary 1 ≤ i, j ≤ Nx,

0 ≤ t ≤ Nt.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 29

Table 3. Comparison of CPU time (s) with different Nts (all
problems are solved on 256 × 256 grids)

Equation Name [τU , τP , Ttotal]
M ×Nt

1× 100 2× 50 4× 25 10× 10 20× 5 25× 4 33× 3 + 1 50× 2 100× 1

AC(ε0 = 0.01) [0.5, 0.5, 1.0] – – 1198.41 219.52 137.71 138.65 88.53 106.41 92.72

AC(ε0 = 0.1) [0.5, 0.5, 1.0] – – 90.28 57.73 34.37 50.43 41.37 26.62 24.20

AC(ε0 = 1) [0.5, 0.5, 1.0] 64.28 38.11 23.42 24.24 13.05 13.29 12.51 10.89 10.72

CH [0.5, 0.5, 1.0] 775.15 208.93 170.77 252.99 148.96 183.34 101.41 77.35 86.37

6th Order [0.8, 0.8, 0.1] – – 374.82 389.90 285.12 384.52 199.11 188.58 208.30

Varcoeff [0.95, 0.5, 1.0] – – 305.73 206.72 204.34 153.88 144.67 142.22 61.46

4.3. Hyperparameter selection. Given the spatial and the temporal step sizes
hx, ht of the implicit scheme, there are 5 hyperparameters to be determined for
our algorithm: Nt, τU , τP , ω, and ε. In the following, we discuss the choice of these
hyperparameters.

(1) (Choosing Nt) As mentioned previously in section 2.3, one can distribute the
computational task into multiple blocks and apply PDHG algorithm to evaluate
each block of solutions sequentially. Suppose we aim to solve an equation on
[0, Ttotal]. We may divide the time interval into M ·Nt subintervals, i.e.,

[0, Ttotal] =

M⋃
k=1

Ik =

M⋃
k=1

⎛⎝ Nt⋃
j=1

Ik,j

⎞⎠ ,

where each Ik,j = [(k − 1)T + (j − 1)ht, (k − 1)T + jht],

with T = Ttotal/M, ht = T/Nt.

We then apply our proposed method to each subinterval Ik in order to obtain
the entire numerical solution on [0, Ttotal]. We test our algorithm with different
combinations of M · Nt on various types of equations. Unless specified otherwise,
we choose ω = 1, ε = 0.1. We set the stopping criteria as ‖Res(Uk)‖∞ < 10−6.
The efficiency of our algorithm under different scenarios is reflected in CPU time
demonstrated in Table 3. Among the series of experiments, we observe that it is
usually efficient to pick Nt ≤ 5.
(2) (Choosing τU , τP) Theoretically, choosing τU , τP as suggested in Corollary 8.1
will guarantee the convergence of our method. In practice, we can pick a larger
τU , τP to achieve faster convergence. Generally speaking, the optimal step size τP
is around 0.9, and the optimal ratio � = τP

τU
should be slightly less than 2. The

intuition of choosing � > 1 is that we want to treat the inner optimization of the

functional L̂(U,Q) defined in (2.15) w.r.t. the dual variable Q more thoroughly. In
fact, it is common in bi-level optimization to choose a larger, more aggressive step
size for the inner-level optimization problem both practically [17] and theoretically
[30,55]. A rather efficient choice of the step sizes (τU , τP) is (0.5, 0.9). This is verified
in Table 4, in which we compare the choice (0.5, 0.9) with other combinations of
(τU , τP).
(3) (Choosing ω) We pick ω = 1 in our experiments. If one increases or decreases ω,
one should modify τP correspondingly so that γ̃ = ωτP remains unchanged. Once
γ̃ ≈ 0.9 is fixed, we generally achieve the optimal (or near-optimal) performance of
our algorithm.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

30 S. LIU, X. ZUO, S. OSHER, AND W. LI

Table 4. Comparison on speeds among different ratios � = τP
τU

for different equations

ε = 0.1 for all problems τU = 0.9, τP = 0.5 τU = 0.65, τP = 0.65 τU = 0.5, τP = 0.9

6th Order [T = 0.5]
Nx = 256, Nt = 50 62.28 47.92 30.53
Nx = 128, Nt = 50 12.31 9.47 8.54

VarCoeff [T = 0.5]
Nx = 256, Nt = 50 103.23 109.38 82.38
Nx = 128, Nt = 50 15.92 13.35 9.54

Table 5. Comparison of CPU time (s) between our treatment and
the classical IMEX method on computing equation (4.3) on [0, 20]

Our method
IMEX

ht = 0.5 · 10−3 ht = 0.2 · 10−3 ht = 10−4

1481.76 s 1814.40 s 4158.18 s 6216.81 s

(4) (Choosing ε) We set ε around 0.1. Recall that supQ {L̂(U,Q)} = ‖F̂ (U)‖2

2ε . In-

creasing ε will decrease the convexity of the functional ‖F̂ (U)‖2

2ε , which will slow down
our algorithm. Decreasing ε brings our algorithm closer to our original version of
PDHG method [35], in which we discover stronger oscillations towards convergence,
which may also affect the efficiency.

4.4. Long-time computation via adaptive time step size. It is an important
topic how one can efficiently compute the RD equation for large time T to study
its behavior near the equilibrium state. Since we can pick large time step size ht

under the implicit scheme, our proposed method offers an opportunity for faster
computations to approximate the equilibrium state of RD equations.

To be more precise, we adopt adaptive time step size ht during the update of
time-implicit scheme (2.1). Suppose we set up an upper bound h̄t > 0 for time
step size ht. As ht < h̄t, we increase ht by 10% if the proposed PDHG algorithm
converges in less than n̄ steps. Otherwise, we decrease ht by 50%. If ht exceeds h̄t,
we reset ht = h̄t.

We implement this strategy of adaptive time step size on equation (4.3) with
T = 20. As we pick ε0 = 0.01, (4.3) possesses weak mobility-diffusion and strong
reaction. We solve the equation with Nx = 256, and set the initial time step size
ht = 0.01, we set h̄t = 0.08. As shown in Figure 15, our method works efficiently
in this example, with an average ht ≈ 0.04. We also compute the same equation by
using the classical IMEX method [25] in which we treat the linear part as implicit
and the nonlinear part as explicit. We apply the preconditioned conjugate gradient
(PCG) algorithm with tolerance3 η = 10−10 to solve the linear system at each
IMEX step. For (4.3), the IMEX method only works stably for a rather small time
step size ht ≤ 0.5 · 10−3. As reflected in Table 5, our method works better on
long-time computation.

4.5. Comparison on computational efficiency. In this section, we compare
the computational efficiency (in CPU time) of the proposed method with some

3Suppose we apply PCG algorithm to solve the linear equation Ax = b with A positive definite.
Denote xk as the solution obtained at the k-th iteration of the PCG algorithm, then we terminate
the PCG iteration if ‖Axk − b‖∞ ≤ η.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 31

Figure 15. (Left) Plot of time step size ht versus physical time t;
(Right) Plot of PDHG iterations versus physical time t; (Bottom)
Plot of accumulated CPU time (s) versus physical time t

classical algorithms used for solving time-implicit schemes of the reaction-diffusion
equations.

(1) (Nonlinear SOR) The Nonlinear SOR (NL SOR) method is the nonlinear
version of the successive over-relaxation (SOR) algorithm. It is used to
solve the implicit scheme of the Allen-Cahn equation (4.1) in [38]. We set
the tolerance of the Newton’s method used in NL SOR as 10−10. We set
τU = 0.55, τP = 0.95 for our PDHG method. We compare NL SOR with
our algorithm in Figure 16.

(2) (Fixed point method) The fixed point method is also a frequently used
algorithm to solve the time-implicit scheme of the RD equation. We refor-
mulate the time-implicit scheme (2.1) as

(I + ahtGhLh)U t+1 = U t − bhtGhf(U t+1).

For fixed U t, we establish the following fixed point iteration for solving
U t+1,

Uk+1 = (I + htGh(aLh + bcI))−1(U t − bhtGh(f(Uk) − cUk)),

with initial guess U0 = U t.

Here c is a tunable constant that can be chosen as the value of f ′(·) at
equilibrium state. When f(u) = W (u) = 1

4 (1−u2)2, we set c = f ′(±1) = 2.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

32 S. LIU, X. ZUO, S. OSHER, AND W. LI

Figure 16. Accumulated CPU time comparison between our
method (red) and Nonlinear SOR method (blue) applied to Allen-
Cahn equation (4.1) with ε0 = 0.1 and ht = 0.005. We solve the
equation on a 128 × 128 grid. The quantile plots are composed
based on 40 independent runs of both algorithms.

Figure 17. Accumulated CPU time comparison between our
method (red) and PCG-fixed point iteration (blue). We solve (4.3)
with ε0 = 0.1 and ht = 0.01 on a 256 × 256 grid. These quantile
plots are composed based on 40 independent runs of both algo-
rithms.

The linear system is solved by the PCG algorithm with tolerance η =
10−10. We set τU = 0.5, τP = 0.95 for our PDHG method. We apply both
algorithms to (4.3) with ε0 = 0.1. We compare the fixed point method with
our algorithm in Figure 17.

(3) (Newton’s method) Newton’s method with the PCG algorithm as its lin-
ear solver serves as a popular tool for solving implicit schemes of RD equa-
tions with a higher order of spatial differentiation. Here we consider New-
ton’s method introduced in section 3 of [11]. In [11], Newton’s method is ap-
plied to the spectral discretization of the solution while here we apply New-
ton’s method to the finite difference scheme. We set τU = 0.5, τP = 0.95
for our PDHG method. We apply both methods to (4.6). According to

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 33

Figure 18. Accumulated CPU time comparison between our
method (red) and Newton’s method (blue). Solving equation (4.6)
with ht = 0.001 (Left) and ht = 0.005 (Right). We solve the equa-
tion on a 256× 256 grid. These quantile plots are composed based
on 40 independent runs of both algorithms.

Table 6. Time costs of applying the PDHG method and Newton’s
method to (4.6) on 256 × 256 grid

Method PDHG PCG Newton’s method
ht × n 0.01 × 50 0.005 × 100 0.001 × 500 0.0005 × 1000 0.00025 × 2000

CPU time(s) 263.90 422.28 299.02 470.71 773.01

our experiments, we observe that when the time step size ht ≤ 0.005, New-
ton’s method works more efficiently than the PDHG algorithm. When
ht > 0.005, the PDHG method is faster. Such observation is reflected in
Figure 18. Table 6 demonstrates that the PDHG method is more efficient
than Newton’s method when the latter is applied to multi-interval compu-
tation with smaller time step sizes.

5. Conclusion

In this research, we reformulate the PDHG algorithm proposed in [35] by intro-
ducing a quadratic regularization term to solve implicit schemes of RD equations.
Theoretically, we establish unique existence results for the time-implicit schemes of
general RD equations. We further prove the exponential convergence for both the
PDHG flow and the proposed discrete-time PDHG algorithm. In addition, we show
that the convergence rates are independent of the grid size Nx. Our theoretical re-
sults are also supported by numerous numerical experiments. We test the proposed
PDHG method via four different types of reaction-diffusion equations. Based on
these numerical examples, we verify the optimal (or near-optimal) way to set the
hyperparameters of our algorithm. We also verify the efficiency of our method by
comparing it with several classical root-finding algorithms, such as the nonlinear
SOR method, the fixed point method, and Newton’s method.

We end the discussion by mentioning important future directions.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

34 S. LIU, X. ZUO, S. OSHER, AND W. LI

• The convergence rate achieved in this research is not the sharpest rate. Can
we establish a sharp convergence rate in terms of the algorithm’s hyperpa-
rameters?

• Currently, all of the proposed preconditioners are time-independent. How
can we design a more sophisticated time-dependent preconditioner to assist
the convergence of the generalized PDHG algorithm?

• As we accumulate multiple time intervals together to formulate a saddle-
point scheme for the root-finding problem, we cancel the causalities among
different time nodes. Will this causality-free optimization strategy render
the possibility of parallel computing for the proposed PDHG time-implicit
solvers?

• While the proposed algorithm performs efficiently on reaction-diffusion
equations, we aim to extend our approach to simulate general equations
in physical modeling, including Fokker-Planck equations and their general-
izations in complex systems.

• Extend the proposed primal-dual approach to nonlinear, high-dimensional
equations by integrating deep learning algorithms.

Appendix A. Proofs of section 3.1

A.1. Proof of Theorem 1.

Proof of Theorem 1. To prove this result, we only need to prove that the following
single-step scheme

(A.1)
U − U0

ht
= −Gh(aLhU + bf(U))

admits a unique solution U for arbitrary U0. By writing ξ = U−U0, we reformulate
(A.1) as

(A.2)
ξ

ht
+ Gh(aLh(U0 + ξ) + bf(U0 + ξ)) = 0.

We first show that ξ solves (A.2) iff ξ is the critical point of the following variational
problem

(A.3) min
ξ∈Ran(Gh)

{
ξ�G†

hξ

2ht
+

a

2
(U0 + ξ)�Lh(U0 + ξ) + bW (U0 + ξ)�1

}
.

Here we denote W (·) as the primitive function of f(·). Let us define V = Ran(Gh)
and J (ξ) as the function in (A.3) for simplicity. Define ΠV as the orthogonal
projection from RNx×Nx onto the subspace V .

We know that ξ is a critical point of J on space V iff

ΠV∇J (ξ) = 0.

By direct calculation, this is equivalent to

G†
hξ

ht
+ a ΠVLh(U0 + ξ) + b ΠVf(U + ξ) = 0.

Writing the projection ΠV = G†
hGh, we obtain

G†
h

(
ξ

ht
+ a GhLh(U0 + ξ) + b Ghf(U + ξ)

)
= 0.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 35

Since the vector inside the above bracket belongs to V , the above is equivalent to
(A.2).

We now prove the existence and uniqueness of the minimizer to the variational
problem (A.3) under condition (3.3), which implies the theorem.

By a change of variable ξ = Q1x, where Q1 is defined as in the spectral decom-
position (3.2) of Gh, and x ∈ Rr, (A.3) is equivalent to the following nonconstrained
optimization problem

(A.4) min
x∈Rr

{
x�Λ−1x

2ht
+

a

2
x�Q�

1 LhQ1x + a U0�LhQ1x + b W (U0 + Q1x)�1

}
.

Denote J̃ (x) as the function in the above problem. Computing ∇J̃ yields

∇J̃ (x)=
Λ−1

ht
x+ aQ�

1 LhQ1x+aQ�
1 LhU

0+bQ�
1 (V ′(U0+Q1x)+φ(U0+Q1x)).

Then

(x− y, ∇J̃ (x) −∇J̃ (y))

=
1

ht
(x− y)�Λ(x− y) + a(x− y)�Q�

1 LhQ1(x− y)

+ b(Q1(x− y))�(V ′(U0 + Q1x) − V ′(U0 + Q1y))

+ b(Q1(x− y))�(φ(U0 + Q1x) − φ(U0 + Q1y))

≥ (x− y)�
(

Λ

ht
+ aQ�

1 LhQ1

)
(x− y) + bK‖x− y‖2 − bLip(φ)‖x− y‖2

≥
(
λmin

(
Λ−1

ht
+ aQ�

1 LhQ1

)
+ bK − bLip(φ)

)
‖x− y‖2.

Then the condition (3.3) leads to

α = λmin

(
Λ−1

ht
+ aQ�

1 LhQ1

)
+ bK − bLip(φ) > 0.

This shows the α-strongly convexity of J̃ , which leads to the existence and unique-
ness of the minimizer to (A.3), which accomplishes the proof. �

A.2. Simplified conditions for specific reaction-diffusion equations. The
condition (3.3) can be simplified for specific types of equations. We discuss two
examples.

• (Allen-Cahn equation with periodic boundary condition) In this case, G =
Id,L = −Δ. f(x) = x3 − x. We set Gh = IN2

x
, and Lh = −ΔP

hx
=

INx
⊗ (−LapP

hx
) + (−LapP

hx
) ⊗ INx

, where LapP
hx

is defined in (2.2). Then

λP
k =

4

h2
x

sin2

(
πk

Nx

)
, with 1 ≤ k ≤ Nx,

are the eigenvalues of −LapP
hx

. And the eigenvalues of Λ−1

ht
+ a Q�

1 LhQ1 =
I
ht

+aLh are λk,l = 1
ht

+a(λP
k +λP

l), with 1 ≤ k, l ≤ Nx. Thus, λmin(
Λ−1

ht
+

a Q�
1 LhQ1) = 1

ht
.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

36 S. LIU, X. ZUO, S. OSHER, AND W. LI

Furthermore, we can decompose f(x) = V ′(x) + φ(x), where

V (x) =

{
1
4 (x2 − 1)2, |x| > 1;

0, |x| ≤ 1.
φ(x) =

{
0, |x| > 1;

x3 − x, |x| ≤ 1.

Then one can verify that K = 0 and Lip(φ) = 2. In this case, condition
(3.3) implies

ht <
1

Lip(φ)b
=

1

2b
.

• (Cahn-Hilliard equation with periodic boundary condition) In this case,

G = −Δ, L = −Δ. f(x) = x3 − x. We set Gh = Lh = I ⊗ (−LapP
hx

) +

(−LapP
hx

) ⊗ I. We have

λmin

(
Λ−1

ht
+ a Λ

)
= min

1≤k,l≤Nx−1

{
1

(λP
k + λP

l)ht
+ a(λP

k + λP
l)

}
≥ 2

√
a

ht
.

Thus, a sufficient condition for (3.3) is

ht <
4a2

b2Lip(φ)2
=

a2

b2
.

It is worth mentioning that the conditions on ht for both Allen-Cahn and Cahn-
Hilliard equations are independent of the spatial step size h, which makes it possible
for our scheme to overcome the CFL condition required in the time-explicit scheme.

Appendix B. Proofs of section 3.2

B.1. Proofs of section 3.2.1. To prove Lemma 2, we need Lemma 9 and Lemma
10.

Lemma 9. Suppose λ ≥ λ > 0. Assume μ > 0 satisfies 1√
λ
− 1√

λ
< 2√

μ . Define

A = max

{(
1 −

√
μ√
λ

)2

,

(
1 −

√
μ√
λ

)2
}
, and B =

(
1 +

√
μ√
λ

)2

,

then we always have A < B. Then for any λ ∈ [λ, λ], and γ, ε > 0 with A < γε < B,
the matrix Bλ

(B.1) Bλ =

[
γλ − 1

2 (μ− (1 − γε)λ)
− 1

2 (μ− (1 − γε)λ) με

]
is always positive definite.

Proof of Lemma 9. First, we have

∣∣∣∣1 −
√
μ√
λ

∣∣∣∣ < 1 +
√
μ√
λ
, 1 −

√
μ√
λ
< 1 +

√
μ√
λ
; and the

condition 1√
λ
− 1√

λ
< 2√

μ yields −(1 −
√
μ√
λ
) < 1 +

√
μ√
λ
. This yields

max

{∣∣∣∣1 −
√
μ√
λ

∣∣∣∣ , ∣∣∣∣1 −
√
μ√
λ

∣∣∣∣} < 1 +

√
μ√
λ
.

Taking squares on both sides of the above inequality gives A < B.
On the other hand, since γλ > 0, and με > 0, we know Bλ is positive definite

if and only if det(Bλ) > 0. In order to alleviate our notations, let us denote the
quadratic polynomial qμ,λ(·) as

qμ,λ(x) = λ2x2 − 2λ(μ + λ)x + (μ− λ)2.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 37

Then we know det(Bλ) = − 1
4qμ,λ(γε).

Now, for fixed λ ∈ [λ, λ], the two roots of qμ,λ(x) are
(
1 ±

√
μ√
λ

)2
. Thus qμ,λ(x) <

0 if

x ∈ Iλ �
((

1 −
√
μ√
λ

)2

,

(
1 +

√
μ√
λ

)2
)
.

On the other hand, we have

sup
λ∈[λ,λ]

{(
1 −

√
μ√
λ

)2
}

= max

{(
1 −

√
μ√
λ

)2

,

(
1 −

√
μ√
λ

)2
}

= A,

and

inf
λ∈[λ,λ]

{(
1 +

√
μ√
λ

)}
=

(
1 +

√
μ√
λ

)2

= B.

As a result,
⋂

λ∈[λ,λ] Iλ = (A,B). Thus, we have shown that for any λ ∈ [λ, λ], and

A < γε < B, qμ,λ(γε) < 0. This directly leads to the assertion of the lemma. �

Lemma 10 (Positive definiteness of Hμ). Consider the matrix Hμ,

Hμ =

[
γΣ − 1

2 (μI − (1 − γε)Σ)
− 1

2 (μI − (1 − γε)Σ) μεI

]
,

with Σ symmetric and positive definite. Suppose 0 < λ ≤ λ are two positive numbers
such that the spectrum λ(Σ) ⊂ [λ, λ]. We further assume that 1√

λ
− 1√

λ
< 2√

μ . We

adopt the notation A,B in Lemma 9, i.e.,

A = max

{(
1 −

√
μ√
λ

)2

,

(
1 −

√
μ√
λ

)2
}
, and B =

(
1 +

√
μ√
λ

)2

.

By Lemma 9, we have A < B. We also assume that γ, ε > 0 satisfy A < γε < B.
Define the function ϕμ,γ,ε(·) as

(B.2) ϕμ,γ,ε(z) =
1

2
(γz + με−

√
(γz − με)2 + (μ− (1 − γε)z)2).

We denote β = min
λ∈[λ, λ]

{ϕμ,γ,ε(λ)}, then β > 0. And we have Hμ � βI.

Proof of Lemma 10. For any λ ∈ [λ, λ], consider the matrix Bλ as defined in (B.1),
i.e.,

Bλ =

[
γλ − 1

2 (μ− (1 − γε)λ)
− 1

2 (μ− (1 − γε)λ) με

]
.

By Lemma 9, we know Bλ is positive definite. By a direct calculation, the eigen-
values of Bλ are given by (we assume λ1(Bλ) ≥ λ2(Bλ)),

λ1,2(Bλ) =
γλ + με±

√
(γλ− με)2 + (μ− (1 − γε)λ)2

2
.(B.3)

Thus λ2(Bλ) = ϕμ,γ,ε(λ). Since Bλ is positive definite, λ2(Bλ) = ϕμ,γ,ε(λ) > 0.

As a result, ϕμ,γ,ε(λ) > 0 for λ ∈ [λ, λ]. Since ϕμ,γ,ε(·) is continuous on the

compact set [λ, λ], we know the infimum value β > 0. At the same time, it is not
hard to verify that Bλ � βI for any λ ∈ [λ, λ].

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

38 S. LIU, X. ZUO, S. OSHER, AND W. LI

To estimate Hμ from below, let us denote λ(Σ) = {λ1, λ2, . . . , λN} with λ1 ≥
λ2 ≥ · · · ≥ λN > 0 as the eigenvalues of matrix Σ. Since Hμ is symmetric, Hμ is
similar to the following block diagonal matrix via an orthogonal transform⎡⎢⎢⎢⎣

Bλ1

Bλ2

. . .

BλN

⎤⎥⎥⎥⎦ ,

with each Bλj
defined as in (B.1). Since each λj ∈ λ(Σ) ⊂ [λ, λ], the above

argument applies to every Bλj
, i.e., Bλj

� βI for any 1 ≤ j ≤ N . This leads to
Hμ � βI. �

We are ready to prove Lemma 2.

Proof of Lemma 2. We denote

Σ = DF̂ (Ut)DF̂ (Ut)
� = (I + Dη(Ut))(I + Dη(Ut)

�),

and compute

d

dt
Iμ(Ut, Qt) = F̂ (U)�DF̂ (U)U̇ + μ Q�Q̇

= −F̂ (U)�DF̂ (U)DF̂ (U)�(Q + γQ̇) + μ Q�(−εQ + F̂ (U))

= −F̂ (U)�Σ(Q + γ(−εQ + F̂ (U))) − με‖Q‖2 + μQ�F̂ (U)

= F̂ (U)�(μI − (1 − γε)Σ)Q− γF̂ (U)�ΣF̂ (U) − με‖Q‖2

= −[F̂ (U)�, Q�]

[
γΣ − 1

2 (μI − (1 − γε)Σ)
− 1

2 (μI − (1 − γε)Σ) μεI

]
︸ ︷︷ ︸

denote as Hμ

[
F̂ (U)
Q

]

= −[F̂ (U)�, Q�] Hμ [F̂ (U)�, Q�]�.

(B.4)

We denote σ1(Ut) ≥ · · · ≥ σN (Ut) as the singular values of the Jacobian matrix

DF̂ (Ut). It is not hard to verify that the spectrum of Σ

λ(Σ) = {σ2
1(Ut), . . . , σ

2
N (Ut)}.

According to definition (3.6) and (3.7), we have

λ(Σ) ⊂ [σ2, σ2].

Now we apply Lemma 10 with λ = σ2, λ = σ2. We prove that Hμ � βI for any
Ut ∈ RN . As a result, we obtain the following inequality:

d

dt
Iμ(Ut, Qt) = −[F̂ (U)�, Q�] Hμ [F̂ (U)�, Q�]� ≤ −β(‖F̂ (Ut)‖2 + ‖Qt‖2).

Furthermore, one has

max{1, μ}(‖F̂ (U)‖2 + ‖Q‖2) ≥ ‖F̂ (U)‖2 + μ‖Q‖2,
which yields

‖F̂ (U)‖2 + ‖Q‖2 ≥ 2

max{1, μ} Iμ(U,Q).

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 39

This finally leads to

d

dt
Iμ(Ut, Qt) ≤ − 2 β

max{1, μ} Iμ(Ut, Qt).

And the Grönwall’s inequality gives

Iμ(Ut, Qt) ≤ exp

(
− 2 β

max{1, μ} t
)
Iμ(U0, Q0).

�

We now prove Theorem 3.

Proof of Theorem 3. Let us pick the hyperparameter μ = σ2, one can verify that
μ satisfies (3.10). Furthermore,

√
γε = 1 − δ. Since |δ| < 1

κ , 1 − 1
κ <

√
γε < 1 + 1

κ .
This verifies that

√
γε satisfies (3.11). Now Lemma 2 guarantees that ϕμ,γ,ε > 0 on

[σ2, σ2]. For z ∈ [σ2, σ2], we further calculate

ϕμ,γ,ε(z) =
1

2
(γz + με−

√
(γz + με)2 − (4γεμz − (μ− (1 − γε)z)2))

=
1

2

4γεμz − (μ− (1 − γε)z)2

γz + με +
√

(γz + με)2 − (4γεμz − (μ− (1 − γε)z)2)

≥4γεμz − (μ− (1 − γε)z)2

4(γz + με)

=
−(1 − γε)2z2 + 2μ(1 + γε)z − μ2

4(γz + με)

=
−((1 + γε)z − μ)2 + 4γεz2

4(γz + με)

=
(2
√
γεz − (1 + γε)z + μ)(2

√
γεz + (1 + γε)z − μ)

4(γz + με)

=
(
√
μ− |1 −√

γε|
√
z)(

√
μ + |1 −√

γε|
√
z)((1 +

√
γε)2z − μ)

4(γz + με)

1−√
γε=δ, z≤σ2

≥
(
√
μ− |δ|

√
z)(

√
μ + |δ|

√
z)((2 − δ)2z − μ)

4(γσ2 + με)
.(B.5)

Since we have set

γ =
1 − δ

κ
, ε = (1 − δ)κ, μ = σ2.

Substituting them into (B.5) yields

ϕμ,γ,ε(z) ≥
(σ − |δ|√z)(|δ|√z + σ)((2 − δ)2z − σ2)

8(1 − δ) σ σ

=
1

8(1 − δ)

(
1 − |δ|

√
z

σ

)(
|δ|

√
z

σ
+

σ

σ

)
((2 − δ)2z − σ2)

≥ 1

8(1 − δ)
(1 − κ|δ|)

(
|δ| + 1

κ

)
(1 − δ)(3 − δ)σ2

≥ 1

8κ
(1 − κ|δ|)(3 − δ)σ2.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

40 S. LIU, X. ZUO, S. OSHER, AND W. LI

If we denote β = min
z∈[σ2,σ2]

{ϕμ,γ,ε(z)}, then we have

β

max{1, μ} ≥ (1 − κ|δ|)(3 − δ)

8κ

σ2

max{1, σ2} =
1

8
(1 − κ|δ|)(3 − δ)

min{σ2, 1}
κ

.

Thus, the result of Theorem 2 yields

Iμ(Ut, Qt) ≤ exp

(
−1

4
(1 − κ|δ|)(3 − δ)

min{σ2, 1}
κ

t

)
Iμ(U0, Q0).

Taking square root on both sides of the above inequality and using the fact that

‖F̂ (Ut)‖ ≤
√
Iμ(Ut, Qt),

we obtain

‖F̂ (Ut)‖ ≤ exp

(
−1

8
(1 − κ|δ|)(3 − δ)

min{σ2, 1}
κ

t

)√
Iμ(U0, Q0).

This implies our theorem. �

Theorem 11 (Exponential decay of Iμ(Ut, Qt)). Assume that (Ut, Qt) solves (3.5)
with arbitrary initial position (U0, Q0). Then we have the exponential decay of the
Lyapunov function Iμ(Ut, Qt), i.e.,

Iμ(Ut, Qt) ≤ exp (−2λt) Iμ(U0, Q0) ,

where

λ = min{ε− 1

2
|(1 − γε)σ2

1/μ− 1|, ε− 1

2
|(1 − γε)σ2

n/μ− 1|,

γσ2
1 −

1

2
|(1 − γε)σ2

1 − μ|}, γσ2
n − 1

2
|(1 − γε)σ2

n − μ|} .

In particular, when γε = 1, μ = 0, and

γ =
− 1

2
σ2
1−σ2

n

σ2
1+σ2

n
+

√
1
4

(
σ2
1−σ2

n

σ2
1+σ2

n

)2
+ 4σ2

n

2σ2
n

,

we have λ = 2σ2
n
σ2
1+σ2

n

σ2
1−σ2

n
− 1

2σ
4
n

(
σ2
1+σ2

n

σ2
1−σ2

n

)3
+ O(σ6

n).

Proof of Theorem 11. We would like to find λ such that

dI
dt

+ 2λI ≤ 0 .

Then by Gronwall’s inequality, we obtain exponential convergence. We have

dI
dt

+ 2λI = [F̂ (U)�, Q�]

[
λI − γΣ 1

2 (μI − (1 − γε)Σ)
1
2 (μI − (1 − γε)Σ) λμI − μεI

] [
F̂ (U)
Q

]
.

Using Lemma A.1 from [56], it suffices to have

λ− γσ2
i +

1

2
|(1 − γε)σ2

i − μ| ≤ 0 ,(B.6a)

λμ− με +
1

2
|(1 − γε)σ2

i − μ| ≤ 0 ,(B.6b)

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 41

for all σ2 = σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
n = σ2. Let us define g1(σ) = ε− 1

2 |(1−γε)σ2/μ−1|,
and g2(σ) = γσ2 − 1

2 |(1 − γε)σ2 − μ|. Then (B.6) implies that

λ ≤ min
i=1,2

min
σn≤σ≤σ1

gi(σ) .

Since gi(σ)’s are piece-wise linear and have only one kink, it is easy to check that

min
σn≤σ≤σ1

gi(σ) = min{gi(σ1), gi(σn)} .

This proves the first part of our theorem. When taking μ = 1
2 (1−γε)(σ2

1 +σ2
n), one

can show by a straightforward calculation that g1(σn) = g1(σ1). This also implies
that g2(σ1) ≥ g2(σn). Therefore, to make λ large, we would like to equate g1(σn)
and g2(σn). This yields

ε− 1

2

σ2
1 − σ2

n

σ2
1 + σ2

n

= γσ2
n − 1

4
(1 − γε)(σ2

1 − σ2
n),

ε =
γσ2

n + 1
2
σ2
1−σ2

n

σ2
1+σ2

n
− 1

4 (σ2
1 − σ2

n)

1 − 1
4γ(σ2

1 − σ2
n)

.(B.7)

In the special case of γε = 1, we obtain

1 = γε =
γ2σ2

n + 1
2γ

σ2
1−σ2

n

σ2
1+σ2

n
− 1

4γ(σ2
1 − σ2

n)

1 − 1
4γ(σ2

1 − σ2
n)

.(B.8)

We can solve for γ and we get (keeping the positive root)

γ =
− 1

2
σ2
1−σ2

n

σ2
1+σ2

n
+

√
1
4

(
σ2
1−σ2

n

σ2
1+σ2

n

)2
+ 4σ2

n

2σ2
n

.

Consequently, the convergence rate is

λ = γσ2
n = −1

4

σ2
1 − σ2

n

σ2
1 + σ2

n

+
1

2

√
1

4

(
σ2
1 − σ2

n

σ2
1 + σ2

n

)2

+ 4σ2
n

= 2σ2
n

σ2
1 + σ2

n

σ2
1 − σ2

n

− 1

2
σ4
n

(
σ2
1 + σ2

n

σ2
1 − σ2

n

)3

+ O(σ6
n) .(B.9)

�

B.2. Proofs of section 3.2.2. To prove Lemma 4, we need Lemma 12 and Lemma
13.

Lemma 12. Suppose A is an nm× nm matrix defined as

A =

⎡⎢⎢⎢⎢⎢⎣
A1

−I A2

−I A3

. . .
. . .

−I An

⎤⎥⎥⎥⎥⎥⎦ ,

where each Ak is an m×m matrix with σmin(Ak) ≥ α > 0 and σmax(Ak) ≤ α, i.e.,
‖Akv‖ ≥ α‖v‖, ‖Akv‖ ≤ α‖v‖ for any v ∈ Rm. Then ‖A−1‖ ≤

∑n
k=1 α

−k, and
‖A‖ ≤ α + 1, i.e., σmin(A) ≥ 1∑n

k=1 α−k , and σmax(A) ≤ α + 1.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

42 S. LIU, X. ZUO, S. OSHER, AND W. LI

Proof of Lemma 12. By a direct calculation, we have

A−1 =

⎡⎢⎢⎢⎢⎢⎣
A−1

1

(A1A2)
−1 A−1

2

(A1A2A3)
−1 (A2A3)

−1 A−1
3

...
...

...
. . .

(A1A2 . . . An)−1 (A2 . . . An)−1 (A3 . . . An)−1 . . . A−1
n

⎤⎥⎥⎥⎥⎥⎦ .

Thus we can write A−1 as

A−1 =

⎡
⎢⎢⎢⎣
A11 O

A22

. . .

O Ann

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

O

A21

. . .

. . .
. . .

O An,n−1 O

⎤
⎥⎥⎥⎥⎦+ · · ·+

⎡
⎢⎢⎢⎢⎣

O
...

. . .

O
. . .

An1 O . . . O

⎤
⎥⎥⎥⎥⎦

denote as
= J1 + J2 + · · ·+ Jn.

Here, each Jk (1 ≤ k ≤ n) is an nm × nm block-(sub)diagonal matrix whose k-th
subdiagonal is

diag(Ak,1, Ak+1,2, . . . , An,n−k+1).

And each Aij is defined as

Aij = (AjAj+1 . . . Ai)
−1, if i ≥ j.

Then one can bound ‖A−1‖ as

‖A−1‖ ≤
n∑

k=1

‖Jk‖.

To bound each ‖Jk‖ from above, consider any v = [v�1 , v�2 , . . . , v
�
n]� ∈ Rnm with

each vj ∈ Rm, we have

‖Jkv‖2 =
n∑

j=k

‖Aj,j−k+1vj‖2

=

n∑
j=k

‖(Aj−k+1 . . . Aj)
−1vj‖2 ≤ α−2k

n∑
j=k

‖vj‖2 ≤ α−2k‖v‖2.

This yields ‖Jkv‖ ≤ α−k‖v‖ which further gives ‖Jk‖ ≤ α−k. Thus, we have proved
‖A−1‖ ≤

∑n
k=1 α

−k, which directly leads to the result σmin(A) ≥ 1∑n
k=1 α−k .

On the other hand, we write A as

A = diag(A1, . . . , An) − J ⊗ I,

where J is an n× n matrix defined as

(B.10) J =

⎡⎢⎢⎢⎢⎣
0

1
. . .

. . .
. . .

1 0

⎤⎥⎥⎥⎥⎦ ,

and I is an n× n identity matrix. Then we have

‖A‖ ≤ ‖diag(A1, . . . , An)‖ + ‖J ⊗ I‖ ≤ α + 1.

�

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 43

Lemma 13. Suppose G,L are self-adjoint, nonnegative definite matrices. Assume
GL = LG. Then I+GL (or I+LG) is orthogonally equivalent to I+ΛGΛL, where
ΛG,ΛL are the diagonal matrices equivalent to G,L. Furthermore, σmin(I +GL) =
σmin(I + LG) ≥ 1 + λmin(G)λmin(L) ≥ 1.

Proof of Lemma 13. Since G,L commute, they can be diagonalized simultaneously,
i.e., there exists an orthogonal matrix Q, s.t. G = QΛGQ

�, and L = QΛLQ
�, where

ΛG,ΛL � O are diagonal matrices. Then I + GL = I + LG = Q(I + ΛGΛL)Q�.
And thus σmin(I + GL) = σmin(I + ΛGΛL) ≥ 1 + λmin(G)λmin(L) ≥ 1. �

We now prove Lemma 4.

Proof of Lemma 4. We first recall

σ = inf
U∈R

N2
x

{σmin(DF̂ (U))} = inf
U∈R

N2
x

{σmin(M
−1DF (U))},

σ = sup
U∈R

N2
x

{σmax(DF̂ (U))} = sup
U∈R

N2
x

{σmax(M
−1DF (U))},

where we denote F (U) = DU + htGh(aLhU + bf(U)).
We have

(B.11)

σmin(M
−1DF (U)) =

1

σmax(DF (U)−1M)
≥ 1

‖DF (U)−1‖‖M ‖2
=

σmin(DF (U))

‖M ‖ .

And

(B.12) σmax(M
−1DF (U)) ≤ σmax(DF (U))‖M−1‖.

Now we estimate the singular values of DF (U), since

DF (U) =

⎡⎢⎢⎢⎢⎢⎣
X1

−I X2

−I X3

. . .
. . .

−I XNt

⎤⎥⎥⎥⎥⎥⎦ ,

where each Xi = I + ahtGhLh + bhtGhdiag(f ′(U i)). (Here we denote U =
(U1�, . . . , UNt�)�.)

Then for each Xi, we have

σmin(Xi) ≥ σmin(I + ahtGhLh) − σmax(bhtGhdiag(f ′(U i)))

≥ σmin(I + ahtGhLh) − ht|b|‖Gh‖‖diag(f ′(U i))‖.
By Lemma 13, the first term above is no less than 1 + ahtλmin(Gh)λmin(Lh) ≥ 1.
It is not hard to verify that ‖Gh‖ = λmax(Gh), ‖diag(f ′(U i))‖ ≤ Lip(f). This leads
to

σmin(Xi) ≥ 1 − ht|b|λmax(Gh)Lip(f).

We denote α = 1 − ht|b|λmax(Gh)Lip(f). Then α > 0, and is independent of U .
On the other hand, one can also verify that

σmax(Xi) = ‖Xi‖ ≤ ‖I + ahtGhLh‖ + ht|b|‖Gh‖Lip(f),

by denoting α = ‖I + ahtGhLh‖ + ht|b|‖Gh‖Lip(f), we know α is also independent
of U .

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

44 S. LIU, X. ZUO, S. OSHER, AND W. LI

We now apply Lemma 12 to DF (U) with σmin(Xi) ≥ α and σmax(Xi) ≤ α.
Together with (B.11) and (B.12), we have

σmin(DF̂ (U)) ≥ 1(∑Nt

k=1 α
−k
)
‖M ‖

, σmax(DF̂ (U)) ≤ (1 + α)‖M−1‖.

Since α, α, ‖M ‖ and ‖M−1‖ are all independent of U , we are done. �

To prove Lemma 6, we need Lemma 14.

Lemma 14. Suppose we keep all the assumptions from Lemma 6. Let Gh be defined
as in (2.6), and M be defined as in (2.13). Then

‖M−1Gh‖ ≤ Nt

(
max

1≤k≤N2
x

{
λk(Gh)

1 + ht(aλk(Gh)λk(Lh) + bcλk(Gh))

})
.

Proof of Lemma 14. Recall that we have

M =

⎡⎢⎢⎢⎢⎢⎣
X
−I X

−I X
. . .

. . .

−I X

⎤⎥⎥⎥⎥⎥⎦ , X = I + ahtGhLh + bhtGhJf .

By Lemma 13, we have X = Q(I + ahtΛGh
ΛLh

+ bchtΛGh
)Q�, where we have also

used that Gh,Lh commute, and Jf = cI. Here we write ΛGh
,ΛLh

as the diagonal
matrices which are orthogonally similar to Gh,Lh w.r.t. orthogonal matrix Q. It is
not hard to verify that

(B.13) ‖X−1‖ ≤ 1

1 + ht(λmin(aGhLh + bcGh))
≤ 1.

Now one can compute

M−1Gh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X−1

X−2 X−1

X−3 X−2 X−1

.

.

.

.

.

.

.

.

.

.
.
.

X−Nt X−(Nt−1) X−(Nt−2) . . . X−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Gh
Gh

Gh

.
.
.

Gh

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I

X−1 I

X−2 X−1 I

.

.

.

.

.

.

.

.

.

.
.
.

X−(Nt−1) X−(Nt−2) X−(Nt−3) . . . I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X−1Gh
X−1Gh

X−1Gh

.
.
.

X−1Gh

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
G̃h

denote as
= N G̃h.

Similar to the treatment in Lemma 4, we estimate ‖N ‖ by decomposing N as

N =I ⊗X0 + J ⊗X−1 + J2 ⊗X−2 + · · · + JNt−1 ⊗X−(Nt−1) ,

where we recall that J is defined as in (B.10); And X0 is treated as the identity
matrix.

Then we estimate ‖N ‖ as

‖N ‖ ≤
(

Nt−1∑
k=0

‖Jk ⊗ (X−1)k‖
)
.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 45

Since ‖A⊗B‖ = ‖A‖·‖B‖ for any dimensions of square matrices A,B, using (B.13)
and ‖J‖ ≤ 1 yields

(B.14) ‖N ‖ ≤
Nt−1∑
k=0

‖(X−1)k‖ ≤
Nt−1∑
k=0

‖X−1‖k ≤ Nt.

On the other hand, we have

G̃h = X−1Gh = Q((I + ahtΛGh
ΛLh

+ bchtΛGh
)−1ΛGh

)Q�.

If we denote {λk(Gh)}, {λk(Lh)} (1 ≤ k ≤ N2
x) as the corresponding eigenvalues of

Gh,Lh w.r.t. Q, we know

(B.15) ‖G̃h‖ = max
1≤k≤N2

x

{
λk(Gh)

1 + ht(aλk(Gh)λk(Lh) + bcλk(Gh))

}
.

Now combining (B.14) and (B.15) and using ‖M−1Gh‖ ≤ ‖N ‖‖G̃h‖, we finish the
proof. �

We now prove Lemma 6.

Proof of Lemma 6. By Lemma 14 and the fact that ‖DR(·)‖ ≤ Lip(R), we have

‖Dη(U)‖ = ‖bhtM
−1GhDR(U)‖ ≤ bht · ‖M−1Gh‖ · Lip(R) ≤ bTζa,b,c(ht)Lip(R).

Recall that

DF̂ (U) = I + Dη(U).

Now for any v ∈ RN2
x , we have

(B.16)

‖DF̂ (U)v‖ = ‖v + Dη(U)v‖ ≥ ‖v‖ − ‖Dη(U)‖‖v‖. ≥ (1 − bTLip(R)ζa,b,c(ht))‖v‖.
Since the right-hand side of (B.16) is independent of U , this will lead to a lower
bound on σ, i.e.

σ ≥ 1 − bTζa,b,c(ht)Lip(R).

By a similar argument, we have

‖DF̂ (U)v‖ ≤ ‖v‖ + ‖Dη(U)‖‖v‖ ≤ (1 + bTζa,b,c(ht)Lip(R))‖v‖.
This will finally lead to

σ ≤ 1 + bTζa,b,c(ht)Lip(R).

�

Lemma 15 (Sufficient condition on the unique solvability of F̂ (U) = 0). Suppose
conditions (A), (B), (C) and (D) hold. We pick ht and T = Ntht (Nt ∈ N+)

satisfying bTLip(R)ζa,b,c(ht) < 1. Then there exists a unique root of F̂ .

Proof of Lemma 15. (3.12) leads to

max
1≤k≤N2

x

{
λk(Gh)

1 + ht(aλk(Gh)λk(Lh) + bcλk(Gh))

}
<

1

bTLip(R)
,

which is equivalent to

min
1≤k≤N2

x,λk(Gh)>0

{
1

λk(Gh)
+ ht(aλk(Lh) + bc)

}
> bTLip(R).

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

46 S. LIU, X. ZUO, S. OSHER, AND W. LI

O
k

√
k2+1−1

kc
1

Figure 19. Graph of
√
k2+1−1

k

Since T ≥ ht, the right-hand side of the above inequality is larger than or equal to
bhtLip(R). Thus the above inequality yields

(B.17) min
1≤k≤N2

x,λk(Gh)>0

{
1

λk(Gh)ht
+ aλk(Lh) + bc

}
> bLip(R).

Recall the decomposition of f(u) = cu+(f(u)−cu) = cu+R(u). By (D), c ≥ 0. We
can then set K = c, φ = R in Theorem 1. Furthermore, (C) implies λk(Q

�
1 LhQ1) =

λk(Lh). As a result, (B.17) is equivalent to (3.3) in Theorem 1, which leads to the

unique existence of the root-finding problem F̂ (U) = 0. �

B.3. Proofs of section 3.3. Before we prove Theorem 8, we need Lemmas 16, 17
and 18.

Lemma 16. Suppose θ ∈ [0,
√

2 − 1), there exist u, k > 0, s.t.

kuΨ(θ) − 1

4
Ω(u, k, θ)2 > 0,

where Ψ(θ) = 1 − 2θ − θ2, Ω(u, k, θ) = |1 − u− k| + θ(|1 − u| + k).

Proof of Lemma 16. We note that Ω(u, k, θ)2 ≤ ((1 + θ)(|1 − u| + k))2 ≤ 2(1 +
θ)2((1 − u)2 + k2). Then for any u, k > 0, we have

kuΨ(θ) − 1

4
Ω(u, k, θ)2 ≥ kuΨ(θ) − 1

2
(1 + θ)2((1 − u)2 + k2))

= ku(1 + θ)2
(

Ψ(θ)

(1 + θ)2
− ((1 − u)2 + k2)

2ku

)
≥ ku(1 + θ)2

(
Ψ(θ)

(1 + θ)2
−

√
k2 + 1 − 1

k

)
.

Denote c = Ψ(θ)
(1+θ)2 . For any θ ∈ [0,

√
2 − 1), c ∈ (0, 1]. As shown in Figure 19, it is

not hard to verify that
√
k2+1−1

k increases monotonically from 0 to 1 on R+. Thus,
Ψ(θ)

(1+θ)2 −
√
k2+1−1

k > 0 is guaranteed to have a positive solution k > 0. This proves

the lemma.
�

Lemma 17. Suppose F : Rd → Rd is differentiable on Rd. Let v ∈ Rd. Then, for
any x, y ∈ Rd, there exists tv ∈ (0, 1) such that

v�(F (y) − F (x)) = v�DF (x + tv(y − x))(y − x).

Proof of Lemma 17. Define h(t) = v�(F (x + t(y − x)) − F (x)). Since h(·) is dif-
ferentiable on (0, 1), by mean value theorem, there exists tv ∈ (0, 1) such that
h(1) − h(0) = h′(tv). �

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 47

Lemma 18. Suppose a positive sequence {ak}k≥0 satisfies the following recurrence
inequality

(B.18) ak+2 − ak ≤ −Φ ak+1, k ≥ 0

with Φ > 0. Then

ak ≤
(

2

Φ +
√

Φ2 + 4

)k+1
(
a1 +

Φ +
√

Φ2 + 4

2
a0

)
for k ≥ 1.

Proof of Lemma 18. We consider the characteristic polynomial r2 + Φr− 1 = 0. It

has two roots r+ = −Φ+
√
Φ2+4

2 > 0 and r− = −Φ−
√
Φ2+4

2 < 0. Then Φ =
1−r2+
r+

=
1
r+

− r+. Plugging this back to (B.18) yields

ak+2 +

(
1

r+
− r+

)
ak+1 − ak ≤ 0, k ≥ 0,

which further leads to

ak+2 +
1

r+
ak+1 ≤ r+

(
ak+1 +

1

r+
ak

)
k ≥ 0.

Thus, we obtain

(B.19) ak+1 +
1

r+
ak ≤ rk+

(
a1 +

1

r+
a0

)
, for any k ≥ 0.

Taking the index in (B.19) as k − 1 and k, one obtains

rk−1
+

(
a1 +

1

r+
a0

)
≥ ak +

1

r+
ak−1 > ak;

rk+

(
a1 +

1

r+
a0

)
≥ ak+1 +

1

r+
ak >

1

r+
ak.

This yields

ak ≤ rk−1
+

(
a1 +

1

r+
a0

)
, and ak ≤ rk+1

+

(
a1 +

1

r+
a0

)
, k ≥ 1.

Since r+ < 1, we finally obtain

ak ≤
(

2

Φ +
√

Φ2 + 4

)k+1
(
a1 +

Φ +
√

Φ2 + 4

2
a0

)
, k ≥ 1.

�

We now prove Theorem 8.

Proof of Theorem 8. According to Lemma 15, under conditions (A), (B), (C), (D),
and

bTζa,b,c(ht)Lip(R) <
√

2 − 1 < 1,

it is straightforward to check the unique existence of the root-finding problem

F̂ (U) = 0.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

48 S. LIU, X. ZUO, S. OSHER, AND W. LI

Now we suppose {Uk, Qk} solves (2.16). We write Jk = J (Uk, Qk) for conve-
nience. Then we want to bound Jk+1 − Jk from above. We calculate

Jk+1 − Jk =(Uk+1 − Uk) ·
(

1

2
(Uk+1 + Uk) − U∗

)
+ (Qk+1 −Qk) ·

(
Qk+1 + Qk

2

)
≤(Uk+1 − Uk) ·

(
1

2
(Uk+1 + Uk) − U∗

)
+ (Qk+1 −Qk) ·Qk+1

=(Uk+1 − Uk) · (Uk − U∗) +
1

2
‖Uk+1 − Uk‖2 + (Qk+1 −Qk) ·Qk+1.

The inequality is due to the convexity of the quadratic function ‖Q‖2. From (2.16),
we know

Uk+1 − Uk = −τUDF̂ (Uk)
�(Qk+1 + ωτP (F̂ (Uk) − εQk+1))

= −τUDF̂ (Uk)
�((1 − γ̃ε)Qk+1 + γ̃F̂ (Uk))

Qk+1 −Qk = τP (F̂ (Uk) − εQk+1).

Let us define γ̃ = ωτP and � = τP
τU

. Using F (U∗) = 0, we obtain

Jk+1 − Jk

= −τU (Uk − U∗)
�DF̂ (Uk)

�((1− γ̃ε)Qk+1 + γ̃F̂ (Uk))

+ τPQ�
k+1(F̂ (Uk)− εQk+1) +

1

2
‖Uk+1 − Uk‖2

= −τU

(
γ̃(Uk − U∗)

�DF̂ (Uk)
�F̂ (Uk) + (1− γ̃ε)(Uk − U∗)

�DF̂ (Uk)
�Qk+1

− �F̂ (Uk)
�Qk+1 + �ε‖Qk+1‖2

)
+

τ2U
2

‖DF̂ (Uk)
�((1− γ̃ε)Qk+1 + γ̃F̂ (Uk))‖2

= −τU

(
γ̃(Uk − U∗)

�DF̂ (Uk)
�(F̂ (Uk)− F̂ (U∗))︸ ︷︷ ︸

(A)

+(1− γ̃ε)(Uk − U∗)
�DF̂ (Uk)

�Qk+1︸ ︷︷ ︸
(B)

−�(F̂ (Uk)− F̂ (U∗))
�Qk+1︸ ︷︷ ︸

(C)

+ �ε‖Qk+1‖2︸ ︷︷ ︸
(D)

)
+

τ2U
2

‖DF̂ (Uk)
�((1− γ̃ε)Qk+1 + γ̃F̂ (Uk))‖2︸ ︷︷ ︸

(E)

.

By Lemma 17, term (A) and term (C) are given by

(A) = γ̃(Uk − U∗)
�DF̂ (Uk)

�DF̂ (Uk,ν1
)(Uk − U∗) ,

(C) = −(Uk − U∗)
�DF̂ (Uk,ν2

)�Qk+1 ,

where Uk,νj
= U∗ + νj(Uk − U∗) with ν1, ν2 ∈ (0, 1), j = 1, 2.

Recall that DF̂ (U) = I + Dη(U). To simplify the notation, we write

ση = sup
U∈Rn

{‖Dη(U)‖} .

By Lemma 6, we have ση ≤ bTζa,b,c(ht)Lip(R). We now estimate term (A) as

(A) =γ̃(Uk − U∗)DF̂ (Uk)
�DF̂ (Uk,ν1)(Uk − U∗)

=(Uk − U∗)
�(I +Dη(Uk)

�)(I +Dη(Uk,ν1))(Uk − U∗)

=‖Uk − U∗‖2 + (Uk − U∗)
�Dη(Uk)

�(Uk − U∗) + (Uk − U∗)
�Dη(Uk,ν1)(Uk − U∗)

+ (Uk − U∗)
�Dη(Uk)

�Dη(Uk,ν1)(Uk − U∗)

≥(1− 2ση − σ2
η)‖Uk − U∗‖2.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 49

We can further estimate the terms (B), (C), and (E) as

(B) = (1 − γ̃ε)(Uk − U∗)
�(I + Dη(Uk))Qk+1;

(C) = −�(Uk − U∗)
�DF̂ (Uk,ν2

)�Qk+1 = −�(Uk − U∗)
�(I + Dη(Uk,ν2

))�Qk+1.

Thus

(B) + (C) =(1− γ̃ε)(Uk − U∗)
�(I +Dη(Uk))Qk+1 − �(Uk − U∗)

�(I +Dη(Uk,ν2))
�Qk+1

=(1− γ̃ε− �)(Uk − U∗)
�Qk+1 + (Uk − U∗)

�((1− γ̃ε)Dη(Uk)− �Dη(Uk,ν2))
�Qk+1

≥− |1− γ̃ε− �|‖Uk − U∗‖‖Qk+1‖ − (|1− γ̃ε|+ �)σ̄η‖Uk − U∗‖‖Qk+1‖
=− (|1− γ̃ε− �|+ (|1− γ̃ε|+ �)σ̄η)‖Uk − U∗‖‖Qk+1‖ .

And

(E) ≤ σ2(|1 − γ̃ε| · ‖Qk+1‖ + γ̃‖F̂ (Uk)‖)2

≤ σ2(|1 − γ̃ε| · ‖Qk+1‖ + γ̃σ‖Uk − U∗‖)2

≤ 2σ2((1 − γ̃ε)2‖Qk+1‖2 + γ̃2σ2‖Uk − U∗‖2).

The second inequality on (E) is due to

‖F̂ (Uk)‖ =‖F̂ (Uk) − F̂ (U∗)‖ =
∥∥∥ ∫ 1

0

(
d

ds
F̂ (U∗ + s(Uk − U∗))

)
ds
∥∥∥

=
∥∥∥ ∫ 1

0

DF̂ (U∗ + s(Uk − U∗))(Uk − U∗) ds
∥∥∥

≤
∫ 1

0

σ‖Uk − U∗‖ ds = σ‖Uk − U∗‖.

Combining the estimations on term (A)-(E), we obtain

Jk+1 − Jk

= −τU
(
γ̃(1− 2ση − σ2

η)‖Uk − U∗‖2 − (|1− γ̃ε− 	|+ (|1− γ̃ε|+)σ̄η)‖Uk − U∗‖‖Qk+1‖

+ 	ε‖Qk+1‖2 − τU (σ
2(1− γ̃ε)2‖Qk+1‖2 + γ̃2σ2‖Uk − U∗‖2)

)

= −τU [‖Uk − U∗‖, ‖Qk+1‖] (Γ− τUΘ)

[
‖Uk − U∗‖
‖Qk+1‖

]
.

(B.20)

Here

Γ =

[
γ̃(1 − 2ση − σ2

η) − 1
2 (|1 − γ̃ε− �| + (|1 − γ̃ε| + �)σ̄η)

− 1
2 (|1 − γ̃ε− �| + (|1 − γ̃ε| + �)σ̄η) �ε

]
,

Θ =

[
γ̃2σ4

σ2(1 − γ̃ε)2

]
.

Recall that we assume bTζa,b,c(ht)Lip(R) ≤ θ, this leads to ση ≤ θ. By Lemma 6,

we also have σ ≤ 1+θ. Thus, γ̃(1−2ση−σ2
η) > γ̃(1−2θ−θ2) > 0 as θ ∈ [0,

√
2−1).

Hence,

det(Γ) =�γ̃ε(1 − 2ση − σ2
η) −

1

4
(|1 − γ̃ε− �| + (|1 − γ̃ε| + �)σ̄η)

2

≥�γ̃ε(1 − 2θ − θ2) − 1

4
(|1 − γ̃ε− �| + (|1 − γ̃ε| + �)θ)2.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

50 S. LIU, X. ZUO, S. OSHER, AND W. LI

We denote Ψ(θ) = 1−2θ−θ2 and Ω(u, �, θ) = |1−u−�|+(|1−u|+�)θ. Lemma
16 guarantees that there exist γ̃, ω, ε, such that (3.16) holds. The condition (3.16)
leads to det(Γ) > 0, which guarantees the positive definiteness of Γ.

Furthermore, we have Γ � λ2(Γ)I, where λ2(Γ) represents the smallest eigen-
value of Γ and I is an identity matrix. One can bound λ2(Γ) from below as

λ2(Γ) =
γ̃(1 − 2ση − σ2

η) + �ε−
√

(γ̃(1 − 2ση − σ2
η) + �ε)2 − 4det(Γ)

2

≥
4(�γ̃ε(1 − 2θ − θ2) − 1

4 (|1 − γ̃ε− �| + (|1 − γ̃ε| + �)θ)2)

2(γ̃(1 − 2ση − σ2
η) + �ε +

√
(γ̃(1 − 2ση − σ2

η) + �ε)2 − 4det(Γ))

≥
�γ̃ε(1 − 2θ − θ2) − 1

4 (|1 − γ̃ε− �| + (|1 − γ̃ε| + �)θ)2

γ̃(1 − 2ση − σ2
η) + �ε

≥
�γ̃εΨ(θ) − 1

4Ω(γ̃ε, �, θ)2

γ̃ + �ε
.

On the other hand, we have

Θ ≺ σ2 max{γ̃2σ2, |1 − γ̃ε|2}I ≺ (1 + θ)2 max{γ̃2(1 + θ)2, |1 − γ̃ε|2}I.
Thus we have

Γ − τΘ �
(
�γ̃εΨ(θ) − 1

4Ω(γ̃ε, �, θ)2

γ̃ + �ε
− τ (1 + θ)2 max{γ̃2(1 + θ)2, |1 − γ̃ε|2}

)
︸ ︷︷ ︸

denote as C(θ,γ̃,ε,
,τ)

I.

Plug this estimation to (B.20), we obtain

Jk+1 − Jk ≤ −τC(θ, γ̃, ε, �, τ)(‖Uk − U∗‖2 + ‖Qk+1‖2).
Since we set the PDHG step size as

0 < τ < τ̄(θ, γ̃, ε, �, τ) �
�γ̃εΨ(θ) − 1

4Ω(γ̃ε, �, θ)2

2(γ̃ + �ε)(1 + θ)2 max{γ̃2(1 + θ)2, (1 − γ̃ε)2} ,

this guarantees C(θ, γ̃, ε, �, τ) > 0.
Furthermore, as a function of τ , τC(θ, γ̃, ε, �, τ) reaches its maximum value at

τ = 1
2 τ̄(θ, γ̃, ε, �, τ). We then set (here τ̄ denotes τ̄ (θ, γ̃, ε, �))

Φ =
1

2
τ̄C(θ, γ̃, ε, �,

1

2
τ̄) =

(�γ̃εΨ(θ) − 1
4Ω(γ̃ε, �, θ)2)2

2(1 + θ)2 max{γ̃2(1 + θ)2, (1 − γ̃ε)2}(γ̃ + �ε)2
.

Thus we have

Jk+1 − Jk ≤ −Φ · 1

2
(‖Uk − U∗‖2 + ‖Qk+1‖2).

Now we prove the exponential decay of Jk. To do so, we sum up the above
inequality at time index k and k + 1 to obtain,

Jk+2 − Jk ≤ −Φ · 1

2
(‖Uk+1 − U∗‖2 + ‖Qk+2‖2 + ‖Uk − U∗‖2 + ‖Qk+1‖2), k ≥ 0.

It is not hard to see that the right-hand side of the above inequality is no larger
than −ΦJk+1. Hence,

(B.21) Jk+2 − Jk ≤ −ΦJk+1.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 51

Now, by Lemma 18, we obtain

Jk ≤
(

2

Φ +
√

Φ2 + 4

)k+1
(
J1 +

Φ +
√

Φ2 + 4

2
J0

)
, for k ≥ 1.

This concludes our proof. �

References

[1] S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its
application to antiphase domain coarsening, Acta Metallurgica 27 (1979), no. 6, 1085–1095.

[2] Z.-Z. Bai, Y.-M. Huang, and M. K. Ng, On preconditioned iterative methods for Burgers equa-
tions, SIAM J. Sci. Comput. 29 (2007), no. 1, 415–439, DOI 10.1137/060649124. MR2285898

[3] J. W. Cahn, On spinodal decomposition, Acta Metallurgica 9 (1961), no. 9, 795–801.
[4] J. A. Carrillo, K. Craig, L. Wang, and C. Wei, Primal dual methods for Wasserstein gradient

flows, Found. Comput. Math. 22 (2022), no. 2, 389–443, DOI 10.1007/s10208-021-09503-1.
MR4407747

[5] J. A. Carrillo, L. Wang, and C. Wei, Structure preserving primal dual methods for gradient
flows with nonlinear mobility transport distances, SIAM J. Numer. Anal. 62 (2024), no. 1,

376–399, DOI 10.1137/23M1562068. MR4704650
[6] H. D. Ceniceros and C. J. Garćıa-Cervera, A new approach for the numerical solution of

diffusion equations with variable and degenerate mobility, J. Comput. Phys. 246 (2013),
1–10, DOI 10.1016/j.jcp.2013.03.036. MR3066176

[7] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems
with applications to imaging, J. Math. Imaging Vision 40 (2011), no. 1, 120–145, DOI
10.1007/s10851-010-0251-1. MR2782122

[8] L. Chen and J. Wei, Accelerated gradient and skew-symmetric splitting methods for a class
of monotone operator equations, Preprint, arXiv:2303.09009, 2023.

[9] L. Chen and J. Wei, Transformed primal-dual methods for nonlinear saddle point systems,
J. Numer. Math. 31 (2023), no. 4, 281–311, DOI 10.1515/jnma-2022-0056. MR4673495

[10] Y. Chen, B. Hosseini, H. Owhadi, and A. M. Stuart, Solving and learning nonlinear
PDEs with Gaussian processes, J. Comput. Phys. 447 (2021), Paper No. 110668, 29, DOI
10.1016/j.jcp.2021.110668. MR4311012

[11] A. Christlieb, J. Jones, K. Promislow, B. Wetton, and M. Willoughby, High accuracy solutions
to energy gradient flows from material science models. part A, J. Comput. Phys. 257 (2014),
no. part A, 193–215, DOI 10.1016/j.jcp.2013.09.049. MR3129531

[12] J. M. Church, Z. Guo, P. K. Jimack, A. Madzvamuse, K. Promislow, B. Wetton, S. M.
Wise, and F. Yang, High accuracy benchmark problems for Allen-Cahn and Cahn-Hilliard
dynamics, Commun. Comput. Phys. 26 (2019), no. 4, 947–972, DOI 10.4208/cicp.oa-2019-
0006. MR3978662

[13] C. Clason and T. Valkonen, Primal-dual extragradient methods for nonlinear non-
smooth PDE-constrained optimization, SIAM J. Optim. 27 (2017), no. 3, 1314–1339, DOI

10.1137/16M1080859. MR3668604
[14] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier

series, Math. Comp. 19 (1965), 297–301, DOI 10.2307/2003354. MR178586
[15] D. J. Eyre, An unconditionally stable one-step scheme for gradient systems, Unpublished

article, 6, 1998.
[16] F. Fahroo and K. Ito, Optimum damping design for an abstract wave equation, Kybernetika

(Prague) 32 (1996), no. 6, 557–574. New directions in control and automation, I (Limassol,
1995). MR1438105

[17] C. Finn, P. Abbeel, and S. Levine, Model-agnostic meta-learning for fast adaptation of deep
networks, International Conference on Machine Learning, PMLR, 2017, pp. 1126–1135.

[18] P. J. Flory, Thermodynamics of high polymer solutions, J. Chem. Phys. 10 (1942), no. 1,
51–61.

[19] G. Fu, S. Osher, and W. Li, High order spatial discretization for variational time implicit
schemes: Wasserstein gradient flows and reaction-diffusion systems, J. Comput. Phys. 491
(2023), Paper No. 112375, 30, DOI 10.1016/j.jcp.2023.112375. MR4626409

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://mathscinet.ams.org/mathscinet-getitem?mr=2285898
https://mathscinet.ams.org/mathscinet-getitem?mr=4407747
https://mathscinet.ams.org/mathscinet-getitem?mr=4704650
https://mathscinet.ams.org/mathscinet-getitem?mr=3066176
https://mathscinet.ams.org/mathscinet-getitem?mr=2782122
https://arxiv.org/abs/2303.09009
https://mathscinet.ams.org/mathscinet-getitem?mr=4673495
https://mathscinet.ams.org/mathscinet-getitem?mr=4311012
https://mathscinet.ams.org/mathscinet-getitem?mr=3129531
https://mathscinet.ams.org/mathscinet-getitem?mr=3978662
https://mathscinet.ams.org/mathscinet-getitem?mr=3668604
https://mathscinet.ams.org/mathscinet-getitem?mr=178586
https://mathscinet.ams.org/mathscinet-getitem?mr=1438105
https://mathscinet.ams.org/mathscinet-getitem?mr=4626409

52 S. LIU, X. ZUO, S. OSHER, AND W. LI

[20] G. Fu, S. Osher, W. Pazner, and W. Li, Generalized optimal transport and mean field control
problems for reaction-diffusion systems with high-order finite element computation, J. Com-
put. Phys. 508 (2024), Paper No. 112994, 28, DOI 10.1016/j.jcp.2024.112994. MR4731162

[21] S. Gu and X. Zhou, Convex splitting method for the calculation of transition states of
energy functional, J. Comput. Phys. 353 (2018), 417–434, DOI 10.1016/j.jcp.2017.10.028.
MR3723660

[22] J. Han, A. Jentzen, and W. E, Solving high-dimensional partial differential equations

using deep learning, Proc. Natl. Acad. Sci. USA 115 (2018), no. 34, 8505–8510, DOI
10.1073/pnas.1718942115. MR3847747

[23] W. E, J. Han, and A. Jentzen, Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations, Com-
mun. Math. Stat. 5 (2017), no. 4, 349–380, DOI 10.1007/s40304-017-0117-6. MR3736669

[24] D. Hou, L. Ju, and Z. Qiao, A linear second-order maximum bound principle-preserving BDF
scheme for the Allen-Cahn equation with a general mobility, Math. Comp. 92 (2023), no. 344,
2515–2542, DOI 10.1090/mcom/3843. MR4628759

[25] W. Hundsdorfer and J. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-
Reaction Equations, Springer Series in Computational Mathematics, vol. 33, Springer-Verlag,
Berlin, 2003, DOI 10.1007/978-3-662-09017-6. MR2002152

[26] M. Jacobs, F. Léger, W. Li, and S. Osher, Solving large-scale optimization problems with a
convergence rate independent of grid size, SIAM J. Numer. Anal. 57 (2019), no. 3, 1100–1123,
DOI 10.1137/18M118640X. MR3950682

[27] A. M. Jokisaari, P. W. Voorhees, J. E. Guyer, J. Warren, and O. G. Heinonen, Benchmark
problems for numerical implementations of phase field models, Comput. Mater. Sci. 126
(2017), 139–151.

[28] J. S. Langer, Models of pattern formation in first-order phase transitions, Directions in Con-
densed Matter Physics, World Sci. Ser. Dir. Condensed Matter Phys., vol. 1, World Sci.
Publishing, Singapore, 1986, pp. 165–186, DOI 10.1142/9789814415309 0005. MR873138

[29] Y. Li, H. G. Lee, D. Jeong, and J. Kim, An unconditionally stable hybrid numerical method
for solving the Allen-Cahn equation, Comput. Math. Appl. 60 (2010), no. 6, 1591–1606, DOI
10.1016/j.camwa.2010.06.041. MR2679126

[30] T. Lin, C. Jin, and M. Jordan, On gradient descent ascent for nonconvex-concave minimax
problems, International Conference on Machine Learning, PMLR, 2020, pp. 6083–6093.

[31] C. Liu, C. Wang, and Y. Wang, A structure-preserving, operator splitting scheme for reaction-
diffusion equations with detailed balance, J. Comput. Phys. 436 (2021), Paper No. 110253,
22, DOI 10.1016/j.jcp.2021.110253. MR4234219

[32] C. Liu, C. Wang, and Y. Wang, A second-order accurate, operator splitting scheme for
reaction-diffusion systems in an energetic variational formulation, SIAM J. Sci. Comput.
44 (2022), no. 4, A2276–A2301, DOI 10.1137/21M1444825. MR4459533

[33] C. Liu, C. Wang, Y. Wang, and S. M. Wise, Convergence analysis of the variational operator
splitting scheme for a reaction-diffusion system with detailed balance, SIAM J. Numer. Anal.
60 (2022), no. 2, 781–803, DOI 10.1137/21M1421283. MR4406913

[34] C. Liu and Y. Wang, On Lagrangian schemes for porous medium type generalized diffusion
equations: a discrete energetic variational approach, J. Comput. Phys. 417 (2020), 109566,
27, DOI 10.1016/j.jcp.2020.109566. MR4106706

[35] S. Liu, S. Liu, S. Osher, and W. Li, A first-order computational algorithm for reaction-
diffusion type equations via primal-dual hybrid gradient method, J. Comput. Phys. 500
(2024), Paper No. 112753, 19, DOI 10.1016/j.jcp.2024.112753. MR4687366

[36] S. Liu, S. Osher, W. Li, and C.-W. Shu, A primal-dual approach for solving conservation
laws with implicit in time approximations, J. Comput. Phys. 472 (2023), Paper No. 111654,
16, DOI 10.1016/j.jcp.2022.111654. MR4502215

[37] T. Meng, W. Hao, S. Liu, S. J. Osher, and W. Li, Primal-dual hybrid gradient algorithms for
computing time-implicit Hamilton-Jacobi equations, Preprint, arXiv:2310.01605, 2023.

[38] B. Merriman, J. K. Bence, and S. J. Osher, Motion of multiple functions: a level set approach,

J. Comput. Phys. 112 (1994), no. 2, 334–363, DOI 10.1006/jcph.1994.1105. MR1277282
[39] J. D. Murray, Mathematical Biology. II, 3rd ed., Interdisciplinary Applied Mathematics,

vol. 18, Springer-Verlag, New York, 2003. Spatial models and biomedical applications.
MR1952568

[40] J. E. Pearson, Complex patterns in a simple system, Science 261 (1993), no. 5118, 189–192.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://mathscinet.ams.org/mathscinet-getitem?mr=4731162
https://mathscinet.ams.org/mathscinet-getitem?mr=3723660
https://mathscinet.ams.org/mathscinet-getitem?mr=3847747
https://mathscinet.ams.org/mathscinet-getitem?mr=3736669
https://mathscinet.ams.org/mathscinet-getitem?mr=4628759
https://mathscinet.ams.org/mathscinet-getitem?mr=2002152
https://mathscinet.ams.org/mathscinet-getitem?mr=3950682
https://mathscinet.ams.org/mathscinet-getitem?mr=873138
https://mathscinet.ams.org/mathscinet-getitem?mr=2679126
https://mathscinet.ams.org/mathscinet-getitem?mr=4234219
https://mathscinet.ams.org/mathscinet-getitem?mr=4459533
https://mathscinet.ams.org/mathscinet-getitem?mr=4406913
https://mathscinet.ams.org/mathscinet-getitem?mr=4106706
https://mathscinet.ams.org/mathscinet-getitem?mr=4687366
https://mathscinet.ams.org/mathscinet-getitem?mr=4502215
https://arxiv.org/abs/2310.01605
https://mathscinet.ams.org/mathscinet-getitem?mr=1277282
https://mathscinet.ams.org/mathscinet-getitem?mr=1952568

NUMERICAL ANALYSIS OF PDHG METHOD FOR RD EQUATIONS 53

[41] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: a deep
learning framework for solving forward and inverse problems involving nonlinear partial dif-
ferential equations, J. Comput. Phys. 378 (2019), 686–707, DOI 10.1016/j.jcp.2018.10.045.
MR3881695

[42] J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour, J. Theoret.
Biol. 81 (1979), no. 3, 389–400, DOI 10.1016/0022-5193(79)90042-0. MR558661

[43] J. Shen, J. Xu, and J. Yang, A new class of efficient and robust energy stable schemes for

gradient flows, SIAM Rev. 61 (2019), no. 3, 474–506, DOI 10.1137/17M1150153. MR3989239
[44] J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations,

Discrete Contin. Dyn. Syst. 28 (2010), no. 4, 1669–1691, DOI 10.3934/dcds.2010.28.1669.
MR2679727

[45] M. B. Short, P. Jeffrey Brantingham, A. L. Bertozzi, and G. E. Tita, Dissipation and displace-
ment of hotspots in reaction-diffusion models of crime, Proceedings of the National Academy
of Sciences, 107(9):3961–3965, 2010.

[46] G. Strang, A proposal for Toeplitz matrix calculations, Stud. Appl. Math. 74 (1986), no. 2,
171–176.

[47] G. Strang, The discrete cosine transform, SIAM Rev. 41 (1999), no. 1, 135–147, DOI
10.1137/S0036144598336745. MR1669796

[48] T. Valkonen, A primal-dual hybrid gradient method for nonlinear operators with applications
to MRI, Inverse Problems 30 (2014), no. 5, 055012, 45, DOI 10.1088/0266-5611/30/5/055012.
MR3207154

[49] C. L. Wight and J. Zhao, Solving Allen-Cahn and Cahn-Hilliard equations using the adaptive
physics informed neural networks, Commun. Comput. Phys. 29 (2021), no. 3, 930–954, DOI
10.4208/cicp.oa-2020-0086. MR4203116

[50] J. Xu, Y. Li, S. Wu, and A. Bousquet, On the stability and accuracy of partially and fully
implicit schemes for phase field modeling, Comput. Methods Appl. Mech. Engrg. 345 (2019),
826–853, DOI 10.1016/j.cma.2018.09.017. MR3892022

[51] J. Xu, J. Zhao, and Y. Zhao, Numerical approximations of the Allen-Cahn-Ohta-Kawasaki
equation with modified physics-informed neural networks (PINNs), Int. J. Numer. Anal.
Model. 20 (2023), no. 5, 693–708, DOI 10.4208/ijnam2023-1030. MR4645945

[52] X. Yang, Linear, first and second-order, unconditionally energy stable numerical schemes for
the phase field model of homopolymer blends, J. Comput. Phys. 327 (2016), 294–316, DOI
10.1016/j.jcp.2016.09.029. MR3564340

[53] J. Zhu, Y.-T. Zhang, S. A. Newman, and M. Alber, Application of discontinuous Galerkin
methods for reaction-diffusion systems in developmental biology, J. Sci. Comput. 40 (2009),
no. 1-3, 391–418, DOI 10.1007/s10915-008-9218-4. MR2511741

[54] M. Zhu and T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation
image restoration, UCLA CAM Report, 34:8–34, 2008.

[55] X. Zuo, Z. Chen, H. Yao, Y. Cao, and Q. Gu, Understanding train-validation split in meta-
learning with neural networks, The Eleventh International Conference on Learning Represen-
tations, 2022.

[56] X. Zuo, S. Osher, and W. Li, Primal-dual damping algorithms for optimization, Ann. Math.
Sci. Appl. 9 (2024), no. 2, 467–504, DOI 10.4310/amsa.2024.v9.n2.a7. MR4792061

Department of Mathematics, University of California, Los Angeles

Email address: shuliu@math.ucla.edu

Department of Mathematics, University of California, Los Angeles

Email address: zxz@math.ucla.edu

Department of Mathematics, University of California, Los Angeles

Email address: sjo@math.ucla.edu

Department of Mathematics, University of South Carolina

Email address: wuchen@mailbox.sc.edu

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://mathscinet.ams.org/mathscinet-getitem?mr=3881695
https://mathscinet.ams.org/mathscinet-getitem?mr=558661
https://mathscinet.ams.org/mathscinet-getitem?mr=3989239
https://mathscinet.ams.org/mathscinet-getitem?mr=2679727
https://mathscinet.ams.org/mathscinet-getitem?mr=1669796
https://mathscinet.ams.org/mathscinet-getitem?mr=3207154
https://mathscinet.ams.org/mathscinet-getitem?mr=4203116
https://mathscinet.ams.org/mathscinet-getitem?mr=3892022
https://mathscinet.ams.org/mathscinet-getitem?mr=4645945
https://mathscinet.ams.org/mathscinet-getitem?mr=3564340
https://mathscinet.ams.org/mathscinet-getitem?mr=2511741
https://mathscinet.ams.org/mathscinet-getitem?mr=4792061

	Numerical analysis of a first-order computational algorithm for reaction-diffusion equations via the primal-dual hybrid gradient method
	1. Introduction
	2. Derivation of the method
	2.1. PDHG method for preconditioned root-finding problem
	2.2. Complexity of the algorithm
	2.3. Computing with time causality
	2.4. Relation with G-prox PDHG method

	3. Numerical analysis of the proposed method
	3.1. Unique solvability of the time-implicit scheme
	3.2. Lyapunov analysis for the PDHG flow
	3.3. Lyapunov analysis for the time-discrete case

	4. Numerical examples
	4.1. Tested equations
	4.2. Comparisons with the convex splitting method
	4.3. Hyperparameter selection
	4.4. Long-time computation via adaptive time step size
	4.5. Comparison on computational efficiency

	5. Conclusion
	Appendix A. Proofs of section 3.1
	A.1. Proof of Theorem 1
	A.2. Simplified conditions for specific reaction-diffusion equations

	Appendix B. Proofs of section 3.2
	B.1. Proofs of section 3.2.1
	B.2. Proofs of section 3.2.2
	B.3. Proofs of section 3.3

	References

