# Neural Monge map estimation and its applications

Jiaojiao Fan<sup>1</sup>, Shu Liu<sup>1</sup>, Shaojun Ma, Hao-min Zhou, Yongxin Chen



Georgia Tech



UCLA

# Monge formulation of Optimal transport (OT)

**Our goal:** Compute the Monge map  $T_*$ 

$$T_* = \arg\min_{T: \mathcal{X} \to \mathcal{Y}, T_{\sharp} \rho_a = \rho_b} \int_{\mathcal{X}} c(x, T(x)) \rho_a dx$$

Here we define  $T_{\sharp}\rho_a$  as  $T_{\sharp}\rho_a(E) = \rho_a(T^{-1}(E))$  for any measurable  $E \subset \mathcal{X}$ . One can treat  $\mathcal{X}, \mathcal{Y}$  as Euclidean spaces  $\mathbb{R}^n, \mathbb{R}^m(n, m \text{ are not necessarily equal}).$ 



Explanation of Monge problem<sup>2</sup>

• Many applications in the generative model, multi-agent optimal control, computer vision, etc.

Neural Monge Map estimation and its applications

<sup>&</sup>lt;sup>2</sup>https://medium.com/analytics-vidhya/introduction-to-optimal-transport-fd1816d51086

#### Saddle point scheme

Existing works on  $L^1$ ,  $L^2$  OT problems with costs |x - y|,  $|x - y|^2$ 

**Q:** How to deal with OT problems with **general** cost?

**A:** Introduce the Lagrange Multiplier  $f(\cdot)$  for  $T_{\sharp}\rho_a = \rho_b$ , and formulate the saddle scheme

$$\sup_{f \in C_b(\mathcal{Y})} \inf_{T \in \mathcal{M}(\mathcal{X}, \mathcal{Y})} \mathcal{L}(T, f)$$
(1)

 $C_b(\mathcal{Y})$  denotes the space of bounded continuous functions on  $\mathcal{Y}$  $\mathcal{M}(\mathcal{X},\mathcal{Y})$  denotes the space of measurable map  $\mathcal{T}: \mathcal{X} \to \mathcal{Y}$ 

$$\mathcal{L}(T,f) = \int_{\mathcal{X}} \left[ c(x,T(x)) - f(T(x)) \right] \rho_a dx + \int_{\mathcal{Y}} f(y) \rho_b dy$$

We want to compute the saddle point  $(\hat{T}, \hat{f})$  of (1), i.e.

$$\hat{\mathcal{T}} \in \operatorname*{argmin}_{\mathcal{T} \in \mathcal{M}(\mathcal{X}, \mathcal{Y})} \mathcal{L}(\mathcal{T}, \hat{f}) \qquad \hat{f} \in \operatorname*{argmax}_{f \in \mathcal{C}_b(\mathcal{Y})} \mathcal{L}(\hat{\mathcal{T}}, f)$$

# Algorithm

Parametrize T and f by neural networks  $T_{\theta}$ ,  $f_{\eta}$ . Consider

$$\max_{\eta} \min_{\theta} \mathcal{L}(T_{\theta}, f_{\eta}) := \frac{1}{N} \sum_{k=1}^{N} c(X_k, T_{\theta}(X_k)) - f_{\eta}(T_{\theta}(X_k)) + f_{\eta}(Y_k).$$
(2)

**Algorithm 1** Computing the Monge map from  $\rho_a$  to  $\rho_b$ 

- 1: **Input**: Marginal distributions  $\rho_a$  and  $\rho_b$ , Batch size *N*, Cost function c(x, y).
- 2: Initialize  $T_{\theta}, f_{\eta}$ .
- 3: for K steps do
- 4: Sample  $\{X_k\}_{k=1}^N \sim \rho_a$ . Sample  $\{Y_k\}_{k=1}^N \sim \rho_b$ .
- 5: Update  $\theta$  to decrease (2) for  $K_1$  steps.
- 6: Update  $\eta$  to increase (2) for  $K_2$  steps.
- 7: end for
- 8: **Output**: The transport map  $T_{\theta}$ .

# Comparison between our method and W-GAN

$$\underbrace{\max_{f} \min_{T} \int f(y)\rho_{b}(y)dy - \int f(T(x))\rho_{a}(x)dx + \int c(X, T(x))\rho_{a}(x)dx}_{\text{general Wasserstein distance } C_{\text{Monge}}(\rho_{a},\rho_{b})} \text{Our method}}_{G}$$

$$\underset{G}{\min_{G} \max_{\|D\|_{\text{Lip} \leq 1}} \int D(y)\rho_{b}(y)dy - \int D(G(x))\rho_{a}(x)dx}_{1-\text{Wasserstein distance } W_{1}(G_{\sharp}\rho_{a},\rho_{b})}} \text{Wasserstein GAN}}$$

- Our method: The optimal value is C<sub>Monge</sub>(ρ<sub>a</sub>, ρ<sub>b</sub>).
   W-GAN: The ideal optimal value is **0**
- Our method: Computes for optimal map  $T_*$  s.t.  $T_{*\sharp}\rho_a = \rho_b$ , and minimizes the transport cost

W-GAN: Computes for **feasible** map *G* s.t.  $G_{\sharp}\rho_a = \rho_b$ 

Theorem (Existence of saddle point & its consistency with Monge map)

We consider the saddle problem (1) on  $\mathcal{X} = \mathbb{R}^n, \mathcal{Y} = \mathbb{R}^m$ .

Assume that  $\rho_a, \rho_b$  satisfy

- $\rho_a, \rho_b$  are compactly supported Borel probability distributions on  $\mathbb{R}^n, \mathbb{R}^m$ ;
- $\rho_a$  is absolute continuous with respect to the Lebesgue measure on  $\mathbb{R}^n$ . Assume the cost  $c(\cdot, \cdot)$  satisfies
  - $c \in C^1(\mathcal{X} \times \mathcal{Y});$
  - Fix  $x \in \mathbb{R}^n$ ,  $\nabla_x c(x, \cdot) : \mathbb{R}^m \ni y \mapsto \nabla_x c(x, y) \in \mathbb{R}^n$  is an injective map;
  - There exists a finite constant  $\underline{c}$  such that  $c \geq \underline{c}$ .

Then the saddle point of  $\mathcal{L}(T, f)$  exists. Furthermore, if  $(\hat{T}, \hat{f})$  is a saddle point of  $\mathcal{L}(T, f)$ , then  $\hat{T}$  is the Monge map.

This is a simplified version of Theorem 2 and Corollary 1 from our paper.

#### Posterior error estimation via duality gaps

Consider solving saddle point problem on  $\mathcal{X} = \mathcal{Y} = \mathbb{R}^d$ . Suppose at a certain optimization stage, we obtain (T, f)

#### Theorem (*Posterior* error estimation via duality gaps)

Assume that

- $\nabla_{xy}^2 c(x, y)$ , as a  $d \times d$  matrix, is invertible for all x, y;
- $\nabla^2_{yy}c(x, y)$  is independent of x;
- f is c-concave function on  $\mathbb{R}^d$ ;

And some other standard conditions on ρ<sub>a</sub>, ρ<sub>b</sub> and c hold;
 Denote the duality gaps:

$$\begin{split} \mathcal{E}_{1}(T,f) &= \mathcal{L}(T,f) - \inf_{\widetilde{\mathcal{T}}} \mathcal{L}(\widetilde{T},f), \quad \mathcal{E}_{2}(f) = \sup_{\widetilde{f}} \inf_{\widetilde{\mathcal{T}}} \mathcal{L}(\widetilde{T},\widetilde{f}) - \inf_{\widetilde{\mathcal{T}}} \mathcal{L}(\widetilde{T},f). \\ \text{Denote } T_{*} \text{ as the Monge map of the OT problem. Then} \end{split}$$

 $\|T - T_*\|_{L^2(\beta\rho_a)} \leq \sqrt{2(\mathcal{E}_1(T, f) + \mathcal{E}_2(f))},$ 

where  $\beta(\cdot) > 0$  is a positive weight function depending on  $c, T_*$ , and f.



Pipeline motivated by DALL·E2.

Unpaired data generation process

- $\rho_a$ : distribution of text encoding  $x \in \mathbb{R}^{77 \times 768}$  ( $x \neq 0$ ) from CLIP model;
- $\rho_b$ : distribution of image embedding  $y \in \mathbb{R}^{768}$ .
- Choose transport cost as negative cosine similarity between Rx and y:

$$c(x,y) = -\frac{\langle Rx, y \rangle}{\|Rx\|_2 \|y\|_2}$$

The frozen matrix  $R : \mathbb{R}^{77 \times 768} \to \mathbb{R}^{768}$  is extracted from a linear layer of CLIP model and it projects the text encoding x to the same dimension as image embedding y.



Evaluation of our method on the Laion art dataset



Evaluation of our method on the Conceptual Captions 3M (CC-3M) dataset



(Verification on  $T_{\sharp}\rho_{a} \approx \rho_{b}$ ) Target image embeddings  $\rho_{b}$  (Left), fitted measure of generated embeddings by our method  $T_{\sharp}\rho_{a}$ , results of non-linear kernel map given by Perrot et al. (2016).



(Verification on the optimality of computed T) Averaged cosine similarity between the generated image embeddings and (Left) the ground truth image embeddings or (Right) the unrelated text embeddings.

## Experiment 2: Unpaired image inpaintinting

- $\rho_a$ : distribution of images with masked faces
- ρ<sub>b</sub>: distribution of images with intact faces
- Choose the cost function to be a mean squared error (MSE) in the unmasked area

$$c(x,y) = \alpha \cdot \frac{\|x \odot M(x) - y \odot M(x)\|_2^2}{n},$$

M(x) is a binary mask with the same size as the image. M takes the value 1 in the unmasked region and 0 in the masked region.  $\odot$  represents the point-wise multiplication,  $\alpha$  is a tunable coefficient, and n is the dimension of x.



Unpaired image inpainting on **test** dataset of CelebA 128 × 128. We take the composite image  $G(x) = T(x) \odot M^{C} + x \odot M$  ( $M^{C} = 1 - M$ ) as the output image

# Experiment 2: Unpaired image inpaintinting



Masked images

Real images

Our T(x)

Unpaired image inpainting on the test dataset of CelebA 64  $\times$  64.

#### Experiment 3: Population transportation on Earth

- ρ<sub>a</sub>: current distribution of the population on Earth;
- $\rho_b$ : uniform distribution of population over the landmass on Earth.
- Choose the cost function as the *geodesic distance*  $(\lambda = 1)$  on the sphere

 $c_{\lambda}((\theta_1,\phi_1),(\theta_2,\phi_2)) = \arccos(\lambda(\sin\phi_1\sin\phi_2\cos(\theta_1-\theta_2)+\cos\phi_1\cos\phi_2)).$ 

Here we represent the distance function on sphere under the spherical coordinate  $(\theta, \phi)$  (fix radius r = 1). In practice, we use the approximation versions of  $c_{\lambda}$  ( $\lambda < 1$ ) to relieve the gradient blow-up of  $\arccos(\cdot)$  near  $\pm 1$ .





Left: Samples of  $T_{\sharp}\rho_a$  (green) and samples of  $\rho_a$  (blue) Right: Transport map with cost  $c_{\lambda}$ ,  $\lambda = 0.99$ 

Thank you!

#### **Contact information:**

| Jiaojiao Fan | jiaojiaofan@gatech.edu |
|--------------|------------------------|
| Shu Liu      | shuliu@math.ucla.edu   |
| Shaojun Ma   | shaojunma@gatech.edu   |
| Hao-min Zhou | hmzhou@math.gatech.edu |

Yongxin Chen yongchen@gatech.edu