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Monge formulation of Optimal transport (OT)
Our goal: Compute the Monge map T∗

T∗ = arg min
T :X →Y,T♯ρa=ρb

∫
X

c(x , T (x))ρadx

Here we define T♯ρa as T♯ρa(E) = ρa(T −1(E)) for any measurable E ⊂ X .
One can treat X , Y as Euclidean spaces Rn, Rm(n, m are not necessarily
equal).

Explanation of Monge problem2

• Many applications in the generative model, multi-agent optimal
control, computer vision, etc.

2https://medium.com/analytics-vidhya/introduction-to-optimal-transport-fd1816d51086
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Saddle point scheme
Existing works on L1, L2 OT problems with costs |x − y |, |x − y |2

Q: How to deal with OT problems with general cost?
A: Introduce the Lagrange Multiplier f (·) for T♯ρa = ρb, and
formulate the saddle scheme

sup
f ∈Cb(Y)

inf
T∈M(X ,Y)

L(T , f ) (1)

Cb(Y) denotes the space of bounded continuous functions on Y
M(X , Y) denotes the space of measurable map T : X → Y

L(T , f ) =
∫

X
[c(x , T (x)) − f (T (x))] ρadx +

∫
Y

f (y)ρbdy

We want to compute the saddle point (T̂ , f̂ ) of (1), i.e.

T̂ ∈ argmin
T∈M(X ,Y)

L(T , f̂ ) f̂ ∈ argmax
f ∈Cb(Y)

L(T̂ , f )
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Algorithm
Parametrize T and f by neural networks Tθ, fη. Consider

max
η

min
θ

L(Tθ, fη) := 1
N

N∑
k=1

c(Xk , Tθ(Xk)) − fη(Tθ(Xk)) + fη(Yk). (2)

Algorithm 1 Computing the Monge map from ρa to ρb

1: Input: Marginal distributions ρa and ρb, Batch size N, Cost
function c(x , y).

2: Initialize Tθ, fη.
3: for K steps do
4: Sample {Xk}N

k=1 ∼ ρa. Sample {Yk}N
k=1 ∼ ρb.

5: Update θ to decrease (2) for K1 steps.
6: Update η to increase (2) for K2 steps.
7: end for
8: Output: The transport map Tθ.
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Comparison between our method and W-GAN

max
f

min
T

∫
f (y)ρb(y)dy −

∫
f (T (x))ρa(x)dx +

∫
c(X , T (x))ρa(x)dx︸ ︷︷ ︸

general Wasserstein distance CMonge(ρa,ρb)

Our method

min
G

max
∥D∥Lip≤1

∫
D(y)ρb(y)dy −

∫
D(G(x))ρa(x)dx︸ ︷︷ ︸

1−Wasserstein distance W1(G♯ρa,ρb)

Wasserstein GAN

Our method: The optimal value is CMonge(ρa, ρb).

W-GAN: The ideal optimal value is 0

Our method: Computes for optimal map T∗ s.t. T∗♯ρa = ρb, and
minimizes the transport cost

W-GAN: Computes for feasible map G s.t. G♯ρa = ρb
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Theoretical guarantee

Theorem (Existence of saddle point & its consistency with Monge map)

We consider the saddle problem (1) on X = Rn, Y = Rm.
Assume that ρa, ρb satisfy

ρa, ρb are compactly supported Borel probability distributions on Rn,Rm;
ρa is absolute continuous with respect to the Lebesgue measure on Rn.

Assume the cost c(·, ·) satisfies
c ∈ C1(X × Y);
Fix x ∈ Rn, ∇x c(x , ·) : Rm ∋ y 7→ ∇x c(x , y) ∈ Rn is an injective map;
There exists a finite constant c such that c ≥ c.

Then the saddle point of L(T , f ) exists. Furthermore, if (T̂ , f̂ ) is a saddle
point of L(T , f ), then T̂ is the Monge map.

This is a simplified version of Theorem 2 and Corollary 1 from our paper.
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Posterior error estimation via duality gaps

Consider solving saddle point problem on X = Y = Rd . Suppose
at a certain optimization stage, we obtain (T , f )

Theorem (Posterior error estimation via duality gaps)
Assume that

∇2
xy c(x , y), as a d × d matrix, is invertible for all x , y;

∇2
yy c(x , y) is independent of x;

f is c−concave function on Rd ;
And some other standard conditions on ρa, ρb and c hold;

Denote the duality gaps:
E1(T , f ) = L(T , f ) − inf

T̃
L(T̃ , f ), E2(f ) = sup

f̃

inf
T̃

L(T̃ , f̃ ) − inf
T̃

L(T̃ , f ).

Denote T∗ as the Monge map of the OT problem. Then

∥T − T∗∥L2(βρa) ≤
√

2(E1(T , f ) + E2(f )),

where β(·) > 0 is a positive weight function depending on c, T∗, and f .
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Experiment 1: Unpaired text to image generation

Pipeline motivated by DALL·E2. Unpaired data generation process

ρa: distribution of text encoding x ∈ R77×768 (x ̸= 0) from CLIP model;
ρb: distribution of image embedding y ∈ R768.
Choose transport cost as negative cosine similarity between Rx and y :

c(x , y) = − ⟨Rx , y⟩
∥Rx∥2∥y∥2

.

The frozen matrix R : R77×768 → R768 is extracted from a linear layer of CLIP
model and it projects the text encoding x to the same dimension as image
embedding y .
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Experiment 1: Unpaired text to image generation

Evaluation of our method on the Laion art dataset
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Experiment 1: Unpaired text to image generation

Evaluation of our method on the Conceptual Captions 3M (CC-3M) dataset
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Experiment 1: Unpaired text to image generation

(Verification on T♯ρa ≈ ρb) Target image embeddings ρb (Left), fitted measure of
generated embeddings by our method T♯ρa, results of non-linear kernel map given by
Perrot et al. (2016).

(Verification on the optimality of computed T ) Averaged cosine similarity between the
generated image embeddings and (Left) the ground truth image embeddings or
(Right) the unrelated text embeddings.
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Experiment 2: Unpaired image inpaintinting
ρa: distribution of images with masked faces
ρb: distribution of images with intact faces
Choose the cost function to be a mean squared error (MSE) in the
unmasked area

c(x , y) = α · ∥x ⊙ M(x) − y ⊙ M(x)∥2
2

n ,

M(x) is a binary mask with the same size as the image. M takes the value 1 in
the unmasked region and 0 in the masked region. ⊙ represents the point-wise
multiplication, α is a tunable coefficient, and n is the dimension of x .

Unpaired image inpainting on test dataset of CelebA 128 × 128. We take the
composite image G(x) = T (x) ⊙ MC + x ⊙ M (MC = 1 − M) as the output image
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Experiment 2: Unpaired image inpaintinting

Masked images Real images Our T (x)

Unpaired image inpainting on the test dataset of CelebA 64 × 64.
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Experiment 3: Population transportation on Earth
ρa: current distribution of the population on Earth;
ρb: uniform distribution of population over the landmass on Earth.
Choose the cost function as the geodesic distance (λ = 1) on the sphere

cλ((θ1, ϕ1), (θ2, ϕ2)) = arccos(λ(sin ϕ1 sin ϕ2 cos(θ1 − θ2) + cos ϕ1 cos ϕ2)).
Here we represent the distance function on sphere under the spherical
coordinate (θ, ϕ) (fix radius r = 1). In practice, we use the approximation
versions of cλ (λ < 1) to relieve the gradient blow-up of arccos(·) near ±1.

Left: Samples of T♯ρa (green) and samples of ρa (blue)
Right: Transport map with cost cλ, λ = 0.99
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