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Monge formulation of Optimal transport (OT)

Our goal: Compute the Monge map T,

T.=  argmin / c(x, T(x))padx
T:X—Y, Typa=pp /X

Here we define Typ. as Typa(E) = pa( T~Y(E)) for any measurable E C X
One can treat X', Y as Euclidean spaces R", R™(n, m are not necessarily

equal).

Explanation of Monge problem?

e Many applications in the generative model, multi-agent optimal
control, computer vision, etc.

thtps ://medium.com/analytics-vidhya/introduction-to-optimal-transport-£d1816d51086
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https://medium.com/analytics-vidhya/introduction-to-optimal-transport-fd1816d51086

Saddle point scheme

Existing works on L1, L2 OT problems with costs |x — y|, |x — y|?

Q: How to deal with OT problems with general cost?

A: Introduce the Lagrange Multiplier f(-) for Typ, = pp, and
formulate the saddle scheme

su inf  L(T,f 1
fECb[()y)TEM(va) ( ) ( )

Cp(Y) denotes the space of bounded continuous functions on Y

M(X,Y) denotes the space of measurable map T : X — Y

£(T.9) = [ e T0) = ATCN] pacb + [ F()oocly

We want to compute the saddle point (T, f) of (1), i.e.

T e argmin £(T,¥) f € argmax L(T,f)
TeM(X,Y) feCy(Y)
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Algorithm

Parametrize T and f by neural networks Ty, f,. Consider

max min L(To, fy) = %Z c(Xk, To(Xi)) = £3(To(Xk)) + £ (Yi)-  (2)

Algorithm 1 Computing the Monge map from p, to pp

1: Input: Marginal distributions p, and pp, Batch size N, Cost
function c(x, y).
. Initialize Ty, f,,.
. for K steps do
Sample {Xk}N_; ~ pa. Sample {Yi}_, ~ pp.
Update 6 to decrease (2) for Ki steps.
Update 7 to increase (2) for Ky steps.
end for
: Output: The transport map Ty.

O N T RN
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Comparison between our method and W-GAN

mfaxmj_n/f(y)pb(y)dyf/f(T(X))pa(X)dXJr/C(X, T(x))pa(x)dx  Our method

general Wasserstein distance Cuionge(0a,0b)

min  max D(y)pp(y)dy — | D(G(x))pa(x)dx Wasserstein GAN
G |IDllLip<1

1—Wasserstein distance Wi (G pa,pp)

Our method: The optimal value is Cuonge(pa, Pb)-
W-GAN: The ideal optimal value is 0

Our method: Computes for optimal map T. s.t. T.;p, = ps, and
minimizes the transport cost

W-GAN: Computes for feasible map G s.t. Gyp. = pp

Neural Monge Map estimation and its applications 5/15



Theoretical guarantee

Theorem (Existence of saddle point & its consistency with Monge map)
We consider the saddle problem (1) on X = R",Y =R".
Assume that p,, pp satisfy
pa, pp are compactly supported Borel probability distributions on R", R™;
pa is absolute continuous with respect to the Lebesgue measure on R".
Assume the cost c(-,-) satisfies
celCl(x xY);
Fix x € R", Vxc(x,:) : R™ 2 y — Vie(x,y) € R" is an injective map;
There exists a finite constant ¢ such that ¢ > c.

Then the saddle point of L(T, f) exists. Furthermore, if (T,f) is a saddle
point of L(T,f), then T is the Monge map.

This is a simplified version of Theorem 2 and Corollary 1 from our paper.
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Posterior error estimation via duality gaps

Consider solving saddle point problem on X =Y = R9. Suppose
at a certain optimization stage, we obtain (T, f)

Theorem (Posterior error estimation via duality gaps)

Assume that
V2, c(x,y), as a d x d matrix, is invertible for all x, y;
V2 ,c(x,y) is independent of x;
f is c—concave function on RY;

And some other standard conditions on pa, pp, and c hold;
Denote the duality gaps:

E(T,f) = L(T,f) —inf L(T, ), &)= supinf L(T,f) —inf £(T, ).
T T T T
Denote T. as the Monge map of the OT proble);n. Then

IT = Tellizgspn < V2AE(T, F) + E(F)),

where 3(-) > 0 is a positive weight function depending on c, T, and f.
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Experiment 1: Unpaired text to image generation

Pipeline motivated by DALL-E2. Unpaired data generation process

pa: distribution of text encoding x € R”"*7%® (x £ 0) from CLIP model;
pp: distribution of image embedding y € R"%.
Choose transport cost as negative cosine similarity between Rx and y:
(Rx,y)
c(x,y) = -2
R [ 7 e

The frozen matrix R : R77*768 _, R768 js extracted from a linear layer of CLIP
model and it projects the text encoding x to the same dimension as image
embedding y.
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Experiment 1: Unpaired text to image generation

Evaluation of our method on the Laion art dataset
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Experiment 1: Unpaired text to image generation

Evaluation of our method on the Conceptual Captions 3M (CC-3M) dataset
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Experiment 1: Unpaired text to image generation

(Verification on Typa =~ pp) Target image embeddings p;, (Left), fitted measure of
generated embeddings by our method Typa, results of non-linear kernel map given by
Perrot et al. (2016).

(Verification on the optimality of computed T) Averaged cosine similarity between the
generated image embeddings and (Left) the ground truth image embeddings or
(Right) the unrelated text embeddings.
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Experiment 2: Unpaired image inpaintinting

pa: distribution of images with masked faces
pp: distribution of images with intact faces

Choose the cost function to be a mean squared error (MSE) in the
unmasked area
lx© M(x) —y © M(x)|I3

c(x,y) =« - )

M(x) is a binary mask with the same size as the image. M takes the value 1 in
the unmasked region and 0 in the masked region. © represents the point-wise
multiplication, « is a tunable coefficient, and n is the dimension of x.

Unpaired image inpainting on test dataset of CelebA 128 x 128. We take the
composite image G(x) = T(x) ® M€ + x® M (M€ =1 — M) as the output image
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Experiment 2: Unpaired image inpaintinting

Masked images Real images Our T(x)

Unpaired image inpainting on the test dataset of CelebA 64 x 64.
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Experiment 3: Population transportation on Earth

pa: current distribution of the population on Earth;
pb: uniform distribution of population over the landmass on Earth.

Choose the cost function as the geodesic distance (A = 1) on the sphere

cx((61, 91), (02, ¢2)) = arccos(A(sin ¢1 sin ¢ cos(01 — 02) + cos ¢1 cos ¢2)).

Here we represent the distance function on sphere under the spherical
coordinate (6, ¢) (fix radius r = 1). In practice, we use the approximation
versions of ¢y (A < 1) to relieve the gradient blow-up of arccos(-) near £1.

Left: Samples of Typa (green) and samples of p, (blue)
Right: Transport map with cost ¢y, A = 0.99
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