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Motivation

1. Curiosity.

2. The notion of gradient flow on graph has been investigated
extensively using optimal transport theory1 2; Whether the
concept of Hamiltonian process on graph exists or not?

1J. Maas, Gradient flows of the entropy for finite Markov chains, J. Funct.
Anal. 261 (8) (2011)

2S. Chow, W. Huang, Y. Li, H. Zhou, Fokker-Planck equations for a free
energy functional or Markov process on a graph, Arch. Ration. Mech. Anal.
203 (3) (2012)
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Motivation

3 Recent developments on discrete optimal transport (OT)
problem1, Schrödinger equations (SE) 2 as well as Schrödinger
Bridge Problem (SBP)3 4 have demonstrated Hamiltonian
principles on graph. Can we unify them and establish a
general framework for Hamiltonian process on graph?

1W. Gangbo, W. Li, C. Mou, Geodesics of minimal length in the set of
probability measures on graphs, ESAIM Control Optim. Calc. Var. 25 (2019)
78

2S. Chow, W. Li, H. Zhou, A discrete Schrödinger equation via optimal
transport on graphs, J. Funct. Anal. 276 (8) (2019)

3C. Léonard, A survey of the Schrödinger problem and some of its
connections with optimal transport, Discrete Contin. Dyn. Syst. 34 (4) (2014)

4C. Léonard, Lazy random walks and optimal transport on graphs, Ann.
Probab. 44 (3) (2016)
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Background: Hamiltonian system in probability space
Let us start from
• The dynamical version of OT problem

min
v

{∫ 1

0
E[L(X t , v(X t , t))] dt

}
, (1)

Ẋ t = v(X t , t), X 0 ∼ ρa, X 1 ∼ ρb,

it is equivalent to
• The optimal control problem on P(Rd)

min
ρ,v

{∫ 1

0

∫
Rd

L(x , v(x , t)) ρ(x , t) dxdt

}
, (2)

∂ρ(x , t)

∂t
+∇ · (ρ(x , t)v(x , t)) = 0, ρ(·, 0) = ρa, ρ(·, 1) = ρb.
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Ẋ t = v(X t , t), X 0 ∼ ρa, X 1 ∼ ρb,

it is equivalent to
• The optimal control problem on P(Rd)

min
ρ,v

{∫ 1

0

∫
Rd

L(x , v(x , t)) ρ(x , t) dxdt

}
, (2)

∂ρ(x , t)

∂t
+∇ · (ρ(x , t)v(x , t)) = 0, ρ(·, 0) = ρa, ρ(·, 1) = ρb.



Motivation Backgrounds Motivating example Hamiltonian process on graph Examples

Background: Hamiltonian system in probability space

• Solution to (1) leads to Hamiltonian system on T ∗Rd

Ẋ t =
∂

∂p
H(X t ,pt), X 0 ∼ ρa

ṗt = − ∂

∂x
H(X t ,pt). choose p0 = p0(X 0), s.t. X 1 ∼ ρb.

(3)

• Solution to (2) leads to Hamiltonian system on T ∗P(Rd)

∂tρ(x , t) +∇ · (ρ(x , t)∂H
∂p

(x ,∇S(x , t))) = 0, ρ(·, 0) = ρa

∂tS(x , t) + H(x ,∇S(x , t)) = 0. choose S(·, 0) s.t. ρ(·, 1) = ρb.

(4)

Here we define the Hamiltonian H(x , p) = supv{p · v − L(x , v)}.
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Background: Hamiltonian system in probability space

Q: How can one treat (4) as Hamiltonian system on T ∗P(Rd)?

A: We claim that (4) is the Hamiltonian flow1 of

H (ρ, S) =

∫
Rd

H(x ,∇S(x))ρ(x) dx

on T ∗P(Rd) with respect to certain symplectic form ω.

1S. Chow, W. Li, H. Zhou, Wasserstein Hamiltonian flows, J. Differ. Equ.
268 (3) (2020)
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Background: Hamiltonian system in probability space

We define the cotangent bundle (phase space) of P(Rd) as

T ∗P(Rd) =

{
(ρ,S)

∣∣∣∣∣ ρ ∈ P(Rd), S ∈ L1(ρ)/ ∼

}
,

where we denote S1 ∼ S2 if S1(x) = S2(x) + Const.

We define the symplectic form ω on T ∗P(Rd) as

ω((ρ̇1, Ṡ1), (ρ̇2, Ṡ2)) =

∫
Rd

ρ̇1Ṡ2 − ρ̇2Ṡ1 dx ,

for any two tangent vectors (ρ̇1, Ṡ1), (ρ̇2, Ṡ2) at (ρ,S) ∈ T ∗P(Rd).
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for any two tangent vectors (ρ̇1, Ṡ1), (ρ̇2, Ṡ2) at (ρ, S) ∈ T ∗P(Rd).
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Background: Hamiltonian system in probability space

By definition of ω, one can derive the Hamiltonian flow of
H (ρ, S) on T ∗P(Rd) as

∂tρ =
δ

δS
H (ρ, S), ∂tS = − δ

δρ
H (ρ, S). (5)

Here δ
δρ ,

δ
δS denotes the L2 variation w.r.t. ρ,S . We calculate

δ

δS
H (ρ,S) = −∇ · (ρ∂H(x ,∇S)

∂p
)

δ

δρ
H (ρ,S) = H(x ,∇S)

(6)

Plug (6) in (5), we recover the PDE system (4). This verifies our
previous claim.
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Figure: 1 Hamiltonian system on T ∗P(R2) as solution to dynamical OT

Set L(x , v) = |v|2
2
, H(x , p) = |p|2

2
, H (ρ, S) =

∫
Rd

1
2
|∇S(x)|2ρ(x) dx .

• On T ∗Rd , (red trajectory as {X t}), Ẋ t = pt , ṗt = 0.

• On T ∗P(Rd) (evolving density as {ρt})
∂tρ(x , t) +∇ · (ρ∇S(x , t)) = 0, ∂tS(x , t) +

1

2
|∇S(x , t)|2 = 0.

1S. Liu, S. Ma, Y. Chen, H. Zha, and H. Zhou, “Learning high dimensional
wwsserstein geodesics,” arXiv preprint arXiv:2102.02992, 2021
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• On T ∗P(Rd) (evolving density as {ρt})
∂tρ(x , t) +∇ · (ρ∇S(x , t)) = 0, ∂tS(x , t) +

1

2
|∇S(x , t)|2 = 0.

1S. Liu, S. Ma, Y. Chen, H. Zha, and H. Zhou, “Learning high dimensional
wwsserstein geodesics,” arXiv preprint arXiv:2102.02992, 2021



Motivation Backgrounds Motivating example Hamiltonian process on graph Examples

Table of Contents

Motivation

Backgrounds

Motivating example

Hamiltonian process on graph

Examples



Motivation Backgrounds Motivating example Hamiltonian process on graph Examples

A motivating example: optimal transport on graph G

Our logic:

Consider an optimal control problem (actually an OT
problem) on P(G );

⇓

The critical point of such problem naturally forms a
Hamiltonian system on T ∗P(G );

⇓

Find a random process on G that realizes the Hamiltonian
system;

⇓

Such random process is our desired definition.



Motivation Backgrounds Motivating example Hamiltonian process on graph Examples

A motivating example: optimal transport on graph G

Our logic:

Consider an optimal control problem (actually an OT
problem) on P(G );

⇓

The critical point of such problem naturally forms a
Hamiltonian system on T ∗P(G );

⇓

Find a random process on G that realizes the Hamiltonian
system;

⇓

Such random process is our desired definition.



Motivation Backgrounds Motivating example Hamiltonian process on graph Examples

A motivating example: optimal transport on graph G

Our logic:

Consider an optimal control problem (actually an OT
problem) on P(G );

⇓

The critical point of such problem naturally forms a
Hamiltonian system on T ∗P(G );

⇓

Find a random process on G that realizes the Hamiltonian
system;

⇓

Such random process is our desired definition.



Motivation Backgrounds Motivating example Hamiltonian process on graph Examples

A motivating example: optimal transport on graph G

Our logic:

Consider an optimal control problem (actually an OT
problem) on P(G );

⇓

The critical point of such problem naturally forms a
Hamiltonian system on T ∗P(G );

⇓

Find a random process on G that realizes the Hamiltonian
system;

⇓

Such random process is our desired definition.



Motivation Backgrounds Motivating example Hamiltonian process on graph Examples

A motivating example: optimal transport on graph G

Our logic:

Consider an optimal control problem (actually an OT
problem) on P(G );

⇓

The critical point of such problem naturally forms a
Hamiltonian system on T ∗P(G );

⇓

Find a random process on G that realizes the Hamiltonian
system;

⇓

Such random process is our desired definition.



Motivation Backgrounds Motivating example Hamiltonian process on graph Examples

A motivating example: optimal transport on graph G

Our logic:

Consider an optimal control problem (actually an OT
problem) on P(G );

⇓

The critical point of such problem naturally forms a
Hamiltonian system on T ∗P(G );

⇓

Find a random process on G that realizes the Hamiltonian
system;

⇓

Such random process is our desired definition.



Motivation Backgrounds Motivating example Hamiltonian process on graph Examples

A motivating example: optimal transport on graph G

Our logic:

Consider an optimal control problem (actually an OT
problem) on P(G );

⇓

The critical point of such problem naturally forms a
Hamiltonian system on T ∗P(G );

⇓

Find a random process on G that realizes the Hamiltonian
system;

⇓

Such random process is our desired definition.



Motivation Backgrounds Motivating example Hamiltonian process on graph Examples

A motivating example: optimal transport on graph G

Our logic:

Consider an optimal control problem (actually an OT
problem) on P(G );

⇓

The critical point of such problem naturally forms a
Hamiltonian system on T ∗P(G );

⇓

Find a random process on G that realizes the Hamiltonian
system;

⇓

Such random process is our desired definition.



Motivation Backgrounds Motivating example Hamiltonian process on graph Examples

Notations & general setting

• Consider a undirected graph G (V ,E ) with N vertices
V = {1, 2, ...,N} and edge set E ⊂ {(i , j)|i ̸= j , i , j ∈
V , (i , j), (j , i) denote the same edge}.

• We define

P(G ) = {(ρi )Ni=1 | ρi ≥ 0,
∑N

i=1 ρi = 1}.

• And the neighbouring set of vertex j as

N(j) =
{
l ∈ V | (j , l) ∈ E

}
.

• For any (j , l) ∈ E , define the weight function θjl(ρ) = θlj(ρ)
as certain kind of average of density ρj , ρl , i.e.,
min{ρj , ρl} ≤ θjl(ρ) ≤ max{ρj , ρl}.
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OT problem on G

We mimic (2), and consider the OT problem on graph G ,

min
ρ,v

{∫ 1

0
⟨v , v⟩θ(ρ)dt

}
,

∂tρ+ divθG (ρv) = 0, ρ(·, 0) = ρa, ρ(·, 1) = ρb.

(7)

One should require v to be skew-symmetric, v⊤ = −v , this
guarantees mass conservation

∑N
i=1 ρi = 1.

We define

⟨v , v⟩θ(ρ) =
1

2

∑
(j,l)∈E

θjl(ρ)v
2
jl , (divθ

G (ρv))j = −
∑
l∈N(j)

θjl(ρ)vjl .

min
ρ,v

{∫ 1

0

∫
Rd

1

2
|v(x , t)|2 ρ(x , t) dxdt

}
, (2)

∂ρ(x , t)

∂t
+∇ · (ρ(x , t)v(x , t)) = 0, ρ(·, 0) = ρa, ρ(·, 1) = ρb.
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Critical point of (7) as Hamiltonian system on T ∗P(G )

Notice that (7) is a constrained optimization problem, Lagrange
multiplier method and KKT condition leads the system of (ρ,S) dρi

dt + divθG (ρ∇GS) = 0,
dSi
dt + 1

2

∑
j∈N(i)

∂θij (ρ)
∂ρi

(Si − Sj)
2 = 0.

(8)

∇GS = (Si − Sj)ij , and (divθG (ρ∇GS))i =
∑

j∈N(i) θij(ρ)(Sj −Si ).

Consider the Hamiltonian H (ρ, S) = 1
4

∑
(i ,j)∈E θij(ρ)(Si − Sj)

2,

set symplectic matrix Ω =
(

IN
−IN

)
, one can verify the

Hamiltonian flow of H (ρ,S) w.r.t. Ω on T ∗P(G ) is exactly (8).
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Relate (8) to certain Markov process on G

Recall the first continuity equation in (8)

dρi
dt

+
∑

j∈N(i)

θij(ρ)(Sj − Si ) = 0,

To figure out the random process behind it, we recast this
equation in the form of Master (Chapman–Kolmogorov ) equation

dρ

dt
= ρQ, (9)

where (we assume ρi > 0 for all i ∈ V )

Qji (t) =1{(i ,j)∈E}
θij(ρ(t))

ρj(t)
(Si (t)− Sj(t)), j ̸= i

Qii (t) =−
∑

j∈N(i)

Qij(t) = −
∑

j∈N(i)

θji (ρ(t))

ρi (t)
(Sj(t)− Si (t))
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Relate (8) to certain Markov process on G

The matrix Q is called the transition rate matrix, the Master
equation (9) corresponds to a Markov process if Q satisfies

Qii ≤ 0, Qij ≥ 0, for any j ̸= i ,
N∑
j=1

Qij = 0. (10)

Assume (10) holds, then (9) corresponds to a
time-inhomogeneous Markov process1. To be more specific, (9)
corresponds to a nonlinear Markov processes1 whose transition
rate matrix Q depends not only on the current state i but also on
the current distribution ρ.

1V.N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations,
Cambridge Tracts in Mathematics, vol. 182, Cambridge University Press,
Cambridge, 2010
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Relate (8) to certain Markov process on G

To summarize, we associate the Hamiltonian system (8) with a
nonlinear Markov process

dρ

dt
= ρQ(S , ρ),

with transition rate matrix Q(S , ρ) depending on density ρ and
potential S , such process is second order in the sense that
time-dependent S further solves the discrete Hamilton-Jacobi
equation

dSi
dt

+
1

2

∑
j∈N(i)

∂θij(ρ)

∂ρi
(Si − Sj)

2 = 0.
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Hamiltonian process on a finite graph

Definition (Hamiltonian process on G )
A stochastic process {Xt} is called a Hamiltonian process on the graph G if

1. The density ρt of Xt satisfies the following generalized Master equation,

dρt
dt

= ρtQ(St , ρt , t),

with

Qij(S , ρ, t) = 1(i,j)∈E fji (Sj − Si , ρ, t), Qii (S , ρ, t) = −
∑
j∈N(i)

Qij(S , ρ, t).

And fji : R× R+ × R+ ∪ {0} → R+ ∪ {0} (guarantees (10)), is a
real-valued measurable function which is piece-wise continuous in the first
component.

2. The density ρ and the potential S form a Hamiltonian system on the
cotangent bundle T ∗P(G) of the density space P(G).
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Theorem (Exact form of the Hamiltonian)
Suppose that the stochastic process {Xt}t≥0 with density {ρt}t≥0 and potential
{St}t≥0 forms a Hamiltonian process on the graph G. In addition assume that
Fij is the antiderivative of fij . Then the Hamiltonian always possesses the form

H (ρ, S) =
∑
i∈V

∑
j∈N(i)

ρiFji (Sj − Si , ρ, t) + V(ρ, t), (11)

where V is a function depending ρ and t. Moreover, the Hamiltonian system on
T ∗P(G) is

∂

∂t
ρi (t) =

∑
j∈N(i)

fij(Si − Sj , ρ, t)ρj − fji (Sj − Si , ρ, t)ρi ,

∂

∂t
Si (t) = −

∑
j∈N(i)

(
Fji (Sj − Si , ρ, t) + ρj

∂

∂ρi
Fji (Sj − Si , ρ, t)

)
− ∂

∂ρi
V(ρ, t).
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Proposition (Properties of Hamiltonian process)
Assume that a stochastic process Xt on G is a Hamiltonian process. Then it
holds that

1. (preservation of symplectic form) the symplectic structure on T ∗P(G) is
preserved, i.e.,

ωg(ρ,S)(g
′(ρ,S)ξ, g ′(ρ, S)η) = ω(ρ,S)(ξ, η),

where ω denotes the symplectic form on T ∗P(G), ξ, η ∈ T(ρ,S)(T ∗P(G))
and g ′(ρ, S) is the Jacobi matrix of the Hamiltonian flow g on T ∗P(G);

2. (conservation of energy) H (t) = H (0), if the Hamiltonian H is
independent of t;

3. (conservation of mass) Xt preserves mass, i.e.,
∑N

i=1 ρi (t) =
∑N

i=1 ρi (0).
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Particle-level properties of Hamiltonian process

Q: We have argued that a Hamiltonian system on P(G ) leads the
Hamiltonian process {Xt} on G , can we endow any Hamiltonian
property such as energy conservation to such process on G?

A: Yes, but in the sense of the expectation of energy.
Consider the Hamiltonian with specific form (separable + linear potential)

H (ρ, S) =
∑
i∈V

∑
j∈N(i)

ρjFji (Sj − Si ) +
∑
i∈V

ρiVi .

Suppose that {X (t)} is associated with the Hamiltonian H . Then one can
verify the expectation of energy E[H(X (t), S(t))] with

H(X (t), S(t)) =
∑

j∈N(X (t))

FjX (t)(Sj(t)− SX (t)(t)) + VX (t).

remains constant as time t evolves.
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Example 1: Optimal transport on graph
Recall the Hamiltonian system (8) derived for OT problem on
graph (7) as

dρi
dt

+
∑

j∈N(i)

θij(ρ)(Sj−Si ) = 0,
dSi
dt

+
1

2

∑
j∈N(i)

∂θij(ρ)

∂ρi
(Si−Sj)

2 = 0.

(12)

To guarantee the existence of Markov process, we recall (10).
Common choices of θ such as

• (Arithmetic mean) θAij (ρ) =
ρi+ρj

2 ;

• (Geometric mean ) θGij (ρ) =
√
ρiρj ;

will not satisfy (10).
But fortunately, we have a feasible choice:

• (Upwind choice) θUij (ρ) =

{
ρj Sj < Si

ρi Si < Sj
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Under the Upwind choice, (12) becomes

dρi
dt

=
∑

j∈N(i)

ρj(Sj−Si )
−−ρi (Sj−Si )

+,
dSi
dt

+
1

2

∑
j∈N(i)

((Sj−Si )
+)2 = 0.

(13)
Here we define the positive part of x ∈ R as (x)+ = max{x , 0},
and the negative part as (x)− = max{−x , 0}.

If we write the first equation as Master equation dtρt = ρtQ, then

Qji (S , ρ, t) =1(i ,j)∈E (Sj − Si )
− = 1(i ,j)∈E (Si − Sj)

+, j ̸= i

Qii (S , ρ, t) =−
N∑
j=1

Qij(t) = −
∑

j∈N(i)

(Sj − Si )
+.

We verify Qji (S , ρ, t) = fij(Si − Sj , ρ, t) = 1(i ,j)∈E (Si − Sj)
+ ≥ 0.

Thus (10) is guaranteed and there exists a Markov process
associated to Hamiltonian system (13).



Motivation Backgrounds Motivating example Hamiltonian process on graph Examples

Under the Upwind choice, (12) becomes

dρi
dt

=
∑

j∈N(i)

ρj(Sj−Si )
−−ρi (Sj−Si )

+,
dSi
dt

+
1

2

∑
j∈N(i)

((Sj−Si )
+)2 = 0.

(13)
Here we define the positive part of x ∈ R as (x)+ = max{x , 0},
and the negative part as (x)− = max{−x , 0}.
If we write the first equation as Master equation dtρt = ρtQ, then

Qji (S , ρ, t) =1(i ,j)∈E (Sj − Si )
− = 1(i ,j)∈E (Si − Sj)

+, j ̸= i

Qii (S , ρ, t) =−
N∑
j=1

Qij(t) = −
∑

j∈N(i)

(Sj − Si )
+.

We verify Qji (S , ρ, t) = fij(Si − Sj , ρ, t) = 1(i ,j)∈E (Si − Sj)
+ ≥ 0.

Thus (10) is guaranteed and there exists a Markov process
associated to Hamiltonian system (13).



Motivation Backgrounds Motivating example Hamiltonian process on graph Examples

Under the Upwind choice, (12) becomes

dρi
dt

=
∑

j∈N(i)

ρj(Sj−Si )
−−ρi (Sj−Si )

+,
dSi
dt

+
1

2

∑
j∈N(i)

((Sj−Si )
+)2 = 0.

(13)
Here we define the positive part of x ∈ R as (x)+ = max{x , 0},
and the negative part as (x)− = max{−x , 0}.
If we write the first equation as Master equation dtρt = ρtQ, then

Qji (S , ρ, t) =1(i ,j)∈E (Sj − Si )
− = 1(i ,j)∈E (Si − Sj)

+, j ̸= i

Qii (S , ρ, t) =−
N∑
j=1

Qij(t) = −
∑

j∈N(i)

(Sj − Si )
+.

We verify Qji (S , ρ, t) = fij(Si − Sj , ρ, t) = 1(i ,j)∈E (Si − Sj)
+ ≥ 0.

Thus (10) is guaranteed and there exists a Markov process
associated to Hamiltonian system (13).



Motivation Backgrounds Motivating example Hamiltonian process on graph Examples

We can also verify that Fij(Si − Sj , ρ, t) =
1
21(i ,j)∈E ((Si − Sj)

+)2,
and the Hamiltonian

H (ρ, S) =
∑
i∈V

∑
j∈N(i)

ρiFji (Sj−Si , ρ, t) =
∑
i∈V

∑
j∈N(i)

1

2
ρi ((Sj−Si )

+)2.

Furthermore, the expectation of energy

EXt

 ∑
j∈N(X (t))

1

2
((Sj(t)− SX (t)(t))

+)2


of the Hamiltonian process {Xt} will be conserved for t ≥ 0.
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Example 2: Schrödinger Bridge Problem (SBP) on graph

Background of SBP1 on Rd

• R: the reference path measure of Brownian motion on
(Rd)[0,1];

• P: the path measure of certain stochastic process on (Rd)[0,1]

with fixed marginals at t = 0, 1, P0 = ρa, P1 = ρb.

• SBP: minimize the relative entropy between P and R

min
P

{
H(P|R) =

∫
(Rd )[0,1]

log

(
dP

dR

)
dP

}
, P0 = ρa,P1 = ρb.

(14)

1C. Léonard, A survey of the Schrödinger problem and some of its
connections with optimal transport, Discrete Contin. Dyn. Syst. 34 (4) (2014)
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Two equivalent formulations of SBP on Rd

• (14) can be reduced to an optimal control problem on P(Rd)

min{H(P|R) : P0 = ρa,P1 = ρb} −H(ρa|Leb) (15)

= min
ρ,v

{∫ 1

0

∫
Rd

|vt |2

2
ρt dxdt : (∂t −

∆

2
)ρt +∇ · (vtρt) = 0,

P0 = ρa,P1 = ρb

}
• By replacing ṽt = vt −∇ log ρt , (15) can be casted as

min
ρ,ṽ

{∫ 1

0

∫
Rd

|ṽt |2

2
ρtdx +

1

8
I(ρt)dt : ∂tρt+∇·(ṽtρt)=0,

P0=ρa,P1=ρb

}
(16)

Here I(ρ) =
∫
|∇ log ρ|2ρ dx is the Fisher Information of ρ.
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Optimal solutions to SBP on Rd as Hamiltonian systems

• optimal solution of (15) leads to

(∂t −
∆

2
)ρ+∇ · (∇ϕρ) = 0, ρ(0) = ρ0,

(∂t +
∆

2
)ϕ+

1

2
|∇ϕ|2 = 0, ϕ(1) = log(g1),

it is the Hamiltonian flow of H (ρ, ϕ) =
∫

1
2
|∇ϕ|2ρ−∇ρ · ∇ϕ dx .

• optimal solution of (16) leads to

∂tρ+∇ · (ρ∇S) = 0, ρ(0) = ρ0,

∂tS +
1

2
|∇S |2 = 1

8

δ

δρ
I(ρ), ϕ(1) = log(g1),

it is the Hamiltonian flow of H (ρ, S) =
∫

1
2
|∇S |2ρ dx − 1

8
I(ρ).

• (ρ, ϕ) and (ρ, S) are related via the symplectic transform τ on T ∗P(Rd),
i.e., (ρ, S) = τ(ρ, ϕ) = (ρ, ϕ− log ρ).
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SBP on graph

Two ways to discretize SBP:

1. Discretize from (14);

2. Discretize from (16).

In our research, they will lead to different Hamiltonian processes
on G even though (14) and (16) are equivalent in continuous
space Rd .
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First way of discretization:

Based on entropy-minimization formulation (14),

• Consider R as the reference path measure on G [0,1] whose
marginal {ρ̃t} solves dt ρ̃i =

∑
j∈N(i)m

t
ji ρ̃j −mt

ij ρ̃i .

• Consider P as the path measure of certain stochastic process
on G [0,1] whose marginal ρ0 = ρa, ρ1 = ρb are fixed, and {ρt}
solves dtρi =

∑
j∈N(i) m̂

t
jiρj − m̂t

ijρi .

• One can compute the relative entropy H(P|R) as1

H(P|R) =
∫ 1

0

∑
i∈V

ρ(i , t)
∑

j∈N(i)

m̂t
ij

mt
ij

log

(
m̂t

ij

mt
ij

)
−

m̂t
ij

mt
ij

+ 1

mt
ij dt.

1C. Léonard, Girsanov theory under a finite entropy condition, in: Séminaire
de Probabilités XLIV, in: Lecture Notes in Math., vol. 2046, Springer,
Heidelberg, 2012



Motivation Backgrounds Motivating example Hamiltonian process on graph Examples

First way of discretization:

Based on entropy-minimization formulation (14),

• Consider R as the reference path measure on G [0,1] whose
marginal {ρ̃t} solves dt ρ̃i =

∑
j∈N(i)m

t
ji ρ̃j −mt

ij ρ̃i .

• Consider P as the path measure of certain stochastic process
on G [0,1] whose marginal ρ0 = ρa, ρ1 = ρb are fixed, and {ρt}
solves dtρi =

∑
j∈N(i) m̂

t
jiρj − m̂t

ijρi .

• One can compute the relative entropy H(P|R) as1

H(P|R) =
∫ 1

0

∑
i∈V

ρ(i , t)
∑

j∈N(i)

m̂t
ij

mt
ij

log

(
m̂t

ij

mt
ij

)
−

m̂t
ij

mt
ij

+ 1

mt
ij dt.
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First way of discretization:

Then the Schrödinger Bridge Problem on G is formulated as

min
m̂t≥0


∫ 1

0

∑
i∈V

ρ(i , t)
∑
j∈N(i)

 m̂t
ij

mt
ij

log

(
m̂t

ij

mt
ij

)
−

m̂t
ij

mt
ij

+ 1

mt
ij dt

 (17)

subject to:
d

dt
ρ(i , t) =

∑
j∈N(i)

m̂t
jiρj − m̂t

ijρi ρ(·, 0) = ρa, ρ(·, 1) = ρb.

By introducing Lagrange multiplier S , the KKT condition yields to
the system

d

dt
ρi =

∑
j∈N(i)

−eSj−Simt
ijρi + eSi−Sjmt

jiρj ,

d

dt
Si = −

∑
j∈N(i)

(eSj−Si − 1)mt
ij .

(18)
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First way of discretization:

One can verify that (18) is a Hamiltonian system with the
Hamiltonian

H (ρ,S , t) =
∑
i∈V

∑
j∈N(i)

(exp(Sj − Si )− 1)mt
ijρi .

Furthermore, we can verify the transition rate

Qji (S , ρ, t) = fij(Si − Sj , ρ, t) = eSi−Sjmt
ji ≥ 0.

We can construct a nonlinear Markov process asscoiated to the
solution (18) of Schrödinger Bridge problem (17).
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Second way of discretization:

Based on action-minimizing formulation (16), We consider the
optimal control problem

min
ρ,v

{∫ 1

0
(⟨v , v⟩θU(ρ) +

1

8
IG (ρ))dt

}
, (19)

∂ρ+ divθ
U

G (ρv) = 0, ρ(·, 0) = ρa, ρ(·, 1) = ρb.

Recall

⟨v , v⟩θ(ρ) =
1

2

∑
(j,l)∈E

θjl(ρ)v
2
jl , (divθ

G (ρv))j = −
∑
l∈N(j)

θjl(ρ)vjl ,

defined as before. We directly discretize Fisher Information I(ρ) and define

IG (ρ) =
1

2

∑
(i,j)∈E

(log(ρi )− log(ρj))
2θ̃ij(ρ),

where θ̃ is some weight function, not necessarily equal to θU before.
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Second way of discretization:

Similar to our previous treatments, recall we are using the upwind
weight θU , we can verify the optimal solution is solved by the
following Hamiltonian system

dρi
dt

=
∑
j∈N(i)

ρj(Sj − Si )
− − ρi (Sj − Si )

+,

dSi

dt
+

1

2

∑
j∈N(i)

((Sj − Si )
+)2 =

1

8

∂

∂ρi
IG (ρ).

(20)

It is not hard to verify the Hamiltonian of (20) is

H (ρ, S) =
1

2

∑
i∈V

∑
j∈N(i)

ρi ((Sj − Si )
+)2 − 1

8
IG (ρ). (21)

By aforementioned argument regarding upwind θU , we can also
associated (20) with a nonlinear Markov process as the solution to
Schrödinger Bridge problem (19).
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Comparison of two SBPs on graph

Entropy-minimization SBP Action-minimization SBP

Origin Derived from (17) Derived from (16)

Hamiltonian d
dt

ρt = ρtQ(St , t)
d
dt

ρt = ρtQ(St )

system d
dt

Si = −
∑

j∈N(i)(e
Sj−Si − 1)mt

ij
dSi
dt

+ 1
2

∑
j∈N(i)((Sj − Si )

+)2 = 1
8

∂
∂ρi

IG (ρ)

H ∑
i∈V

∑
j∈N(i)(exp(Sj − Si ) − 1)mt

ijρi
1
2

∑
i∈V

∑
j∈N(i) ρi ((Sj − Si )

+)2 − 1
8
IG (ρ)

Qji , j ̸= i e
Si−Sj mt

ji ≥ 0 Hamiltonian process exists (Si − Sj )
+ Hamiltonian process exists

Reference R stochastic process induced by stochastic process induced by nonlinear generator

linear generator Q = {mt
ij} related to the Fisher Information IG (ρ)

• For more discussion on the periodicity of Schrödinger Bridge
problems, please check our work1.

1J. Cui, S. Liu, H. Zhou, What is a stochastic Hamiltonian process on finite
graph? An optimal transport answer, Journal of Differential Equations, 2021
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Conclusion & Future direction

In this work, we introduce a novel definition and theoretical
framework for Hamiltonian process on graph.

Possible future research directions

1. Well posedness & long time existence of the proposed
Hamiltonian process;

2. Consistency between the proposed Hamiltonian process on
graph and Hamiltonian dynamics in continuous space;

3. Optimal mean-field control on graph.
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Thank you!

Welcome to any comments or questions.
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