Backgrounds 00000000 Motivating example

Hamiltonian process on graph 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hamiltonian process on finite graphs

Jianbo Cui, Shu Liu, Haomin Zhou

Hong Kong Polytechnic University Georgia Institute of Technology Georgia Institute of Technology jianbo.cui@polyu.edu.hk sliu459@gatech.edu hmzhou@math.gatech.edu

March 2022

Backgrounds

Motivating example

Hamiltonian process on graph 00000

Table of Contents

Motivation

Backgrounds

Motivating example

Hamiltonian process on graph

Examples

▲□▶▲□▶▲目▶▲目▶ 目 のへの

Backgrounds

Motivating example

Hamiltonian process on graph 00000

Motivation

1. Curiosity.

¹J. Maas, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal. 261 (8) (2011)

²S. Chow, W. Huang, Y. Li, H. Zhou, Fokker-Planck equations for a free energy functional or Markov process on a graph, Arch. Ration. Mech. Anal. 203 (3) (2012)

ackgrounds 0000000 Motivating example

Hamiltonian process on graph 00000

Motivation

- 1. Curiosity.
- The notion of gradient flow on graph has been investigated extensively using optimal transport theory^{1 2}; Whether the concept of Hamiltonian process on graph exists or not?

¹J. Maas, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal. 261 (8) (2011)

²S. Chow, W. Huang, Y. Li, H. Zhou, Fokker-Planck equations for a free energy functional or Markov process on a graph, Arch. Ration. Mech. Anal. 203 (3) (2012)

ackgrounds

Motivating example

Hamiltonian process on graph 00000

Motivation

3 Recent developments on discrete optimal transport (OT) problem¹, Schrödinger equations (SE)² as well as Schrödinger Bridge Problem (SBP)^{3 4} have demonstrated Hamiltonian principles on graph. Can we unify them and establish a general framework for Hamiltonian process on graph?

¹W. Gangbo, W. Li, C. Mou, Geodesics of minimal length in the set of probability measures on graphs, ESAIM Control Optim. Calc. Var. 25 (2019) 78

²S. Chow, W. Li, H. Zhou, A discrete Schrödinger equation via optimal transport on graphs, J. Funct. Anal. 276 (8) (2019)

³C. Léonard, A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete Contin. Dyn. Syst. 34 (4) (2014)

Backgrounds •0000000 Motivating example

Hamiltonian process on graph 00000

Table of Contents

Motivation

Backgrounds

Motivating example

Hamiltonian process on graph

Examples

▲□▶▲□▶▲目▶▲目▶ 目 のへの

Motivating example

Hamiltonian process on graph 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Background: Hamiltonian system in probability space Let us start from

• The dynamical version of OT problem

$$\min_{v} \left\{ \int_{0}^{1} \mathbb{E}[L(\boldsymbol{X}_{t}, v(\boldsymbol{X}_{t}, t))] dt \right\},$$

$$\dot{\boldsymbol{X}}_{t} = v(\boldsymbol{X}_{t}, t), \ \boldsymbol{X}_{0} \sim \rho_{a}, \ \boldsymbol{X}_{1} \sim \rho_{b},$$
(1)

Motivating example

Hamiltonian process on graph 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Background: Hamiltonian system in probability space Let us start from

• The dynamical version of OT problem

$$\min_{v} \left\{ \int_{0}^{1} \mathbb{E}[L(\boldsymbol{X}_{t}, v(\boldsymbol{X}_{t}, t))] dt \right\},$$

$$\dot{\boldsymbol{X}}_{t} = v(\boldsymbol{X}_{t}, t), \ \boldsymbol{X}_{0} \sim \rho_{a}, \ \boldsymbol{X}_{1} \sim \rho_{b},$$
(1)

it is equivalent to

• The optimal control problem on $\mathcal{P}(\mathbb{R}^d)$

$$\min_{\rho,\nu} \left\{ \int_0^1 \int_{\mathbb{R}^d} L(x,\nu(x,t)) \ \rho(x,t) \ dxdt \right\},$$

$$\frac{\partial \rho(x,t)}{\partial t} + \nabla \cdot (\rho(x,t)\nu(x,t)) = 0, \ \rho(\cdot,0) = \rho_a, \ \rho(\cdot,1) = \rho_b.$$
(2)

Backgrounds

Motivating example

Hamiltonian process on graph 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Background: Hamiltonian system in probability space

• Solution to (1) leads to Hamiltonian system on $\mathcal{T}^*\mathbb{R}^d$

$$\dot{\boldsymbol{X}}_{t} = \frac{\partial}{\partial \boldsymbol{p}} H(\boldsymbol{X}_{t}, \boldsymbol{p}_{t}), \ \boldsymbol{X}_{0} \sim \rho_{a}$$

$$\dot{\boldsymbol{p}}_{t} = -\frac{\partial}{\partial \boldsymbol{x}} H(\boldsymbol{X}_{t}, \boldsymbol{p}_{t}). \text{ choose } \boldsymbol{p}_{0} = \boldsymbol{p}_{0}(\boldsymbol{X}_{0}), \text{ s.t. } \boldsymbol{X}_{1} \sim \rho_{b}.$$
(3)

Here we define the Hamiltonian $H(x, p) = \sup_{v} \{p \cdot v - L(x, v)\}.$

otivating example

Hamiltonian process on graph

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Background: Hamiltonian system in probability space

ullet Solution to (1) leads to Hamiltonian system on $\mathcal{T}^*\mathbb{R}^d$

$$\dot{\boldsymbol{X}}_{t} = \frac{\partial}{\partial \boldsymbol{p}} H(\boldsymbol{X}_{t}, \boldsymbol{p}_{t}), \ \boldsymbol{X}_{0} \sim \rho_{a}$$

$$\dot{\boldsymbol{p}}_{t} = -\frac{\partial}{\partial x} H(\boldsymbol{X}_{t}, \boldsymbol{p}_{t}). \text{ choose } \boldsymbol{p}_{0} = \boldsymbol{p}_{0}(\boldsymbol{X}_{0}), \text{ s.t. } \boldsymbol{X}_{1} \sim \rho_{b}.$$
(3)

 \bullet Solution to (2) leads to Hamiltonian system on $\mathcal{T}^*\mathcal{P}(\mathbb{R}^d)$

$$\partial_t \rho(x,t) + \nabla \cdot (\rho(x,t) \frac{\partial H}{\partial p}(x, \nabla S(x,t))) = 0, \rho(\cdot,0) = \rho_a$$

$$\partial_t S(x,t) + H(x, \nabla S(x,t)) = 0. \text{ choose } S(\cdot,0) \text{ s.t. } \rho(\cdot,1) = \rho_b.$$
(4)

Here we define the Hamiltonian $H(x, p) = \sup_{v} \{ p \cdot v - L(x, v) \}.$

Motivating example

Hamiltonian process on graph 00000

Background: Hamiltonian system in probability space

Q: How can one treat (4) as Hamiltonian system on $\mathcal{T}^*\mathcal{P}(\mathbb{R}^d)$?

 Backgrounds

Hamiltonian process on graph

Background: Hamiltonian system in probability space

Q: How can one treat (4) as Hamiltonian system on $\mathcal{T}^*\mathcal{P}(\mathbb{R}^d)$?

A: We claim that (4) is the Hamiltonian flow¹ of

$$\mathscr{H}(\rho, S) = \int_{\mathbb{R}^d} H(x, \nabla S(x)) \rho(x) \, dx$$

on $\mathcal{T}^*\mathcal{P}(\mathbb{R}^d)$ with respect to certain symplectic form ω .

¹S. Chow, W. Li, H. Zhou, Wasserstein Hamiltonian flows, J. Differ. Equ. 268 (3) (2020) ← → ← (2) → Backgrounds 0000●000 Motivating example 0000000

Hamiltonian process on graph 00000

Background: Hamiltonian system in probability space

We define the *cotangent bundle (phase space)* of $\mathcal{P}(\mathbb{R}^d)$ as

$$\mathcal{T}^*\mathcal{P}(\mathbb{R}^d) = \left\{ (
ho, S) \; \middle| \;
ho \in \mathcal{P}(\mathbb{R}^d), \; S \in L^1(
ho)/\sim
ight\},$$

where we denote $S_1 \sim S_2$ if $S_1(x) = S_2(x) + \text{Const.}$

Hamiltonian process on graph 00000

Background: Hamiltonian system in probability space

We define the *cotangent bundle (phase space)* of $\mathcal{P}(\mathbb{R}^d)$ as

$$\mathcal{T}^*\mathcal{P}(\mathbb{R}^d) = \left\{ (
ho, S) \; \middle| \;
ho \in \mathcal{P}(\mathbb{R}^d), \; S \in L^1(
ho)/\sim
ight\},$$

where we denote $S_1 \sim S_2$ if $S_1(x) = S_2(x) + \text{Const.}$ We define the *symplectic form* ω on $\mathcal{T}^*\mathcal{P}(\mathbb{R}^d)$ as

$$\omega((\dot{\rho_1}, \dot{S_1}), (\dot{\rho_2}, \dot{S_2})) = \int_{\mathbb{R}^d} \dot{\rho_1} \dot{S_2} - \dot{\rho_2} \dot{S_1} \, dx,$$

for any two tangent vectors $(\dot{\rho_1}, \dot{S_1}), (\dot{\rho_2}, \dot{S_2})$ at $(\rho, S) \in \mathcal{T}^*\mathcal{P}(\mathbb{R}^d)$.

・ロト・日本・日本・日本・日本・日本

Backgrounds 00000●00 Motivating example

Hamiltonian process on graph 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Background: Hamiltonian system in probability space

By definition of ω , one can derive the Hamiltonian flow of $\mathscr{H}(\rho,S)$ on $\mathcal{T}^*\mathcal{P}(\mathbb{R}^d)$ as

$$\partial_t \rho = \frac{\delta}{\delta S} \mathscr{H}(\rho, S), \quad \partial_t S = -\frac{\delta}{\delta \rho} \mathscr{H}(\rho, S).$$
 (5)

Backgrounds

Motivating example

Hamiltonian process on graph 00000

Background: Hamiltonian system in probability space

By definition of ω , one can derive the Hamiltonian flow of $\mathscr{H}(\rho, S)$ on $\mathcal{T}^*\mathcal{P}(\mathbb{R}^d)$ as

$$\partial_t \rho = \frac{\delta}{\delta S} \mathscr{H}(\rho, S), \quad \partial_t S = -\frac{\delta}{\delta \rho} \mathscr{H}(\rho, S).$$
 (5)

Here $\frac{\delta}{\delta\rho}, \frac{\delta}{\delta S}$ denotes the L^2 variation w.r.t. ρ, S . We calculate

$$\frac{\delta}{\delta S}\mathscr{H}(\rho, S) = -\nabla \cdot \left(\rho \frac{\partial H(x, \nabla S)}{\partial p}\right) \quad \frac{\delta}{\delta \rho}\mathscr{H}(\rho, S) = H(x, \nabla S) \tag{6}$$

Backgrounds 00000000 Motivating example 00000000

Hamiltonian process on graph 00000

Background: Hamiltonian system in probability space

By definition of ω , one can derive the Hamiltonian flow of $\mathscr{H}(\rho, S)$ on $\mathcal{T}^*\mathcal{P}(\mathbb{R}^d)$ as

$$\partial_t \rho = \frac{\delta}{\delta S} \mathscr{H}(\rho, S), \quad \partial_t S = -\frac{\delta}{\delta \rho} \mathscr{H}(\rho, S).$$
 (5)

Here $\frac{\delta}{\delta\rho}, \frac{\delta}{\delta S}$ denotes the L^2 variation w.r.t. ρ, S . We calculate

$$\frac{\delta}{\delta S}\mathscr{H}(\rho, S) = -\nabla \cdot \left(\rho \frac{\partial H(x, \nabla S)}{\partial p}\right) \quad \frac{\delta}{\delta \rho}\mathscr{H}(\rho, S) = H(x, \nabla S)$$
(6)

Plug (6) in (5), we recover the PDE system (4). This verifies our previous claim.

Μ	ot	iv	'a	ti	0	n
0)				

Backgrounds

Motivating example

Hamiltonian process on graph

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣��

Figure: ¹ Hamiltonian system on $\mathcal{T}^*\mathcal{P}(\mathbb{R}^2)$ as solution to dynamical OT

¹S. Liu, S. Ma, Y. Chen, H. Zha, and H. Zhou, "Learning high dimensional wwsserstein geodesics," arXiv preprint arXiv:2102.02992, 2021

(d) t=0.75

(e) t=1

Set
$$L(x,v) = \frac{|v|^2}{2}$$
, $H(x,p) = \frac{|p|^2}{2}$, $\mathscr{H}(\rho, S) = \int_{\mathbb{R}^d} \frac{1}{2} |\nabla S(x)|^2 \rho(x) dx$.

(b) t=0.25

(a) t=0

¹S. Liu, S. Ma, Y. Chen, H. Zha, and H. Zhou, "Learning high dimensional wwsserstein geodesics," arXiv preprint arXiv:2102.02992, 2021 - < = - < = э

Figure: ¹ Hamiltonian system on $\mathcal{T}^*\mathcal{P}(\mathbb{R}^2)$ as solution to dynamical OT

Set
$$L(x,v) = \frac{|v|^2}{2}$$
, $H(x,p) = \frac{|p|^2}{2}$, $\mathscr{H}(\rho, S) = \int_{\mathbb{R}^d} \frac{1}{2} |\nabla S(x)|^2 \rho(x) dx$.

• On $\mathcal{T}^*\mathbb{R}^d$, (red trajectory as $\{\boldsymbol{X}_t\}$), $\dot{\boldsymbol{X}}_t = \boldsymbol{p}_t$, $\dot{\boldsymbol{p}}_t = 0$.

¹S. Liu, S. Ma, Y. Chen, H. Zha, and H. Zhou, "Learning high dimensional wwsserstein geodesics," arXiv preprint arXiv:2102.02992, 2021

Figure: 1 Hamiltonian system on $\mathcal{T}^*\mathcal{P}(\mathbb{R}^2)$ as solution to dynamical OT

Set
$$L(x, v) = \frac{|v|^2}{2}$$
, $H(x, p) = \frac{|p|^2}{2}$, $\mathscr{H}(\rho, S) = \int_{\mathbb{R}^d} \frac{1}{2} |\nabla S(x)|^2 \rho(x) dx$.

- On $\mathcal{T}^*\mathbb{R}^d$, (red trajectory as $\{\boldsymbol{X}_t\}$), $\dot{\boldsymbol{X}}_t = \boldsymbol{p}_t$, $\dot{\boldsymbol{p}}_t = 0$.
- On $\mathcal{T}^*\mathcal{P}(\mathbb{R}^d)$ (evolving density as $\{\rho_t\}$) $\partial_t \rho(x,t) + \nabla \cdot (\rho \nabla S(x,t)) = 0, \ \partial_t S(x,t) + \frac{1}{2} |\nabla S(x,t)|^2 = 0.$

¹S. Liu, S. Ma, Y. Chen, H. Zha, and H. Zhou, "Learning high dimensional wwsserstein geodesics," arXiv preprint arXiv:2102.02992, 2021

Backgrounds

Motivating example •0000000

Hamiltonian process on graph 00000

Table of Contents

Motivation

Backgrounds

Motivating example

Hamiltonian process on graph

Examples

▲□▶▲□▶▲目▶▲目▶ 目 のへの

Backgrounds 00000000 Motivating example

Hamiltonian process on graph 00000

A motivating example: optimal transport on graph G

Our logic:

Hamiltonian process on graph 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A motivating example: optimal transport on graph G

Our logic:

Consider an optimal control problem (actually an OT problem) on $\mathcal{P}(G)$;

Hamiltonian process on graph 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A motivating example: optimal transport on graph G

Our logic:

Consider an optimal control problem (actually an OT problem) on $\mathcal{P}(G)$;

∜

Hamiltonian process on graph 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A motivating example: optimal transport on graph G

Our logic:

Consider an optimal control problem (actually an OT problem) on $\mathcal{P}(G)$;

1

The critical point of such problem naturally forms a Hamiltonian system on $\mathcal{T}^*\mathcal{P}(G)$;

Hamiltonian process on graph 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A motivating example: optimal transport on graph G

Our logic:

Consider an optimal control problem (actually an OT problem) on $\mathcal{P}(G)$;

1

∜

The critical point of such problem naturally forms a Hamiltonian system on $\mathcal{T}^*\mathcal{P}(G)$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A motivating example: optimal transport on graph G

Our logic:

Consider an optimal control problem (actually an OT problem) on $\mathcal{P}(G)$;

The critical point of such problem naturally forms a Hamiltonian system on $\mathcal{T}^*\mathcal{P}(G)$;

∜

1

Find a random process on G that realizes the Hamiltonian system;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A motivating example: optimal transport on graph G

Our logic:

Consider an optimal control problem (actually an OT problem) on $\mathcal{P}(G)$;

The critical point of such problem naturally forms a Hamiltonian system on $\mathcal{T}^*\mathcal{P}(G)$;

∜

∜

1

Find a random process on G that realizes the Hamiltonian system;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A motivating example: optimal transport on graph G

Our logic:

Consider an optimal control problem (actually an OT problem) on $\mathcal{P}(G)$;

The critical point of such problem naturally forms a Hamiltonian system on $\mathcal{T}^*\mathcal{P}(G)$;

∜

1

Find a random process on G that realizes the Hamiltonian system;

₩

Such random process is our desired definition.

Backgrounds

Motivating example

Hamiltonian process on graph 00000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Notations & general setting

ackgrounds 0000000 Motivating example

Hamiltonian process on graph

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Notations & general setting

• Consider a undirected graph G(V, E) with N vertices $V = \{1, 2, ..., N\}$ and edge set $E \subset \{(i, j) | i \neq j, i, j \in V, (i, j), (j, i)$ denote the same edge $\}$.

ackgrounds 0000000 Motivating example

Hamiltonian process on graph

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Notations & general setting

- Consider a undirected graph G(V, E) with N vertices $V = \{1, 2, ..., N\}$ and edge set $E \subset \{(i, j) | i \neq j, i, j \in V, (i, j), (j, i)$ denote the same edge $\}$.
- We define

$$\mathcal{P}(G) = \{(\rho_i)_{i=1}^N \mid \rho_i \ge 0, \sum_{i=1}^N \rho_i = 1\}.$$

ackgrounds

Motivating example

Hamiltonian process on graph 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Notations & general setting

- Consider a undirected graph G(V, E) with N vertices $V = \{1, 2, ..., N\}$ and edge set $E \subset \{(i, j) | i \neq j, i, j \in V, (i, j), (j, i)$ denote the same edge $\}$.
- We define

$$\mathcal{P}(G) = \{(\rho_i)_{i=1}^N \mid \rho_i \ge 0, \ \sum_{i=1}^N \rho_i = 1\}.$$

• And the neighbouring set of vertex *j* as

$$N(j) = \left\{ l \in V \mid (j, l) \in E \right\}.$$

ackgrounds

Motivating example

Hamiltonian process on graph 00000

Notations & general setting

- Consider a undirected graph G(V, E) with N vertices $V = \{1, 2, ..., N\}$ and edge set $E \subset \{(i, j) | i \neq j, i, j \in V, (i, j), (j, i)$ denote the same edge $\}$.
- We define

$$\mathcal{P}(G) = \{(\rho_i)_{i=1}^N \mid \rho_i \ge 0, \sum_{i=1}^N \rho_i = 1\}.$$

• And the neighbouring set of vertex *j* as

$$N(j) = \left\{ l \in V \mid (j, l) \in E \right\}.$$

For any (j, l) ∈ E, define the weight function θ_{jl}(ρ) = θ_{lj}(ρ) as certain kind of average of density ρ_j, ρ_l, i.e., min{ρ_j, ρ_l} ≤ θ_{jl}(ρ) ≤ max{ρ_j, ρ_l}.
Backgrounds

Motivating example

Hamiltonian process on graph 00000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

OT problem on G

Backgrounds

Motivating example

Hamiltonian process on graph

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

OT problem on GWe mimic (2), and consider the OT problem on graph G,

$$\min_{\rho,\nu} \left\{ \int_{0}^{1} \langle \mathbf{v}, \mathbf{v} \rangle_{\theta(\rho)} dt \right\},$$

$$\partial_{t}\rho + \operatorname{div}_{G}^{\theta}(\rho \mathbf{v}) = 0, \ \rho(\cdot, 0) = \rho_{a}, \ \rho(\cdot, 1) = \rho_{b}.$$
(7)

One should require v to be **skew-symmetric**, $v^{\top} = -v$, this guarantees mass conservation $\sum_{i=1}^{N} \rho_i = 1$. We define

$$\langle \mathbf{v}, \mathbf{v} \rangle_{\theta(\rho)} = \frac{1}{2} \sum_{(j,l) \in E} \theta_{jl}(\rho) \mathbf{v}_{jl}^2, \quad (\operatorname{div}_G^{\theta}(\rho \mathbf{v}))_j = -\sum_{l \in \mathcal{N}(j)} \theta_{jl}(\rho) \mathbf{v}_{jl}.$$

$$\min_{\rho,\nu} \left\{ \int_0^1 \int_{\mathbb{R}^d} \frac{1}{2} |\nu(x,t)|^2 \rho(x,t) \, dx dt \right\},$$

$$\frac{\partial \rho(x,t)}{\partial t} + \nabla \cdot (\rho(x,t)\nu(x,t)) = 0, \ \rho(\cdot,0) = \rho_a, \ \rho(\cdot,1) = \rho_b.$$
(2)

Backgrounds

Motivating example

Hamiltonian process on graph

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Critical point of (7) as Hamiltonian system on $\mathcal{T}^*\mathcal{P}(G)$

Backgrounds

Motivating example

Hamiltonian process on graph

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Critical point of (7) as Hamiltonian system on $\mathcal{T}^*\mathcal{P}(G)$

Notice that (7) is a constrained optimization problem, Lagrange multiplier method and KKT condition leads the system of (ρ, S)

$$\begin{cases} \frac{d\rho_i}{dt} + \operatorname{div}_G^{\theta}(\rho \nabla_G S) = 0, \\ \frac{dS_i}{dt} + \frac{1}{2} \sum_{j \in N(i)} \frac{\partial \theta_{ij}(\rho)}{\partial \rho_i} (S_i - S_j)^2 = 0. \end{cases}$$
(8)

 $\nabla_G S = (S_i - S_j)_{ij}$, and $(\operatorname{div}^{\theta}_G(\rho \nabla_G S))_i = \sum_{j \in N(i)} \theta_{ij}(\rho)(S_j - S_i).$

Backgrounds

Motivating example

Hamiltonian process on graph

Critical point of (7) as Hamiltonian system on $\mathcal{T}^*\mathcal{P}(G)$

Notice that (7) is a constrained optimization problem, Lagrange multiplier method and KKT condition leads the system of (ρ, S)

$$\begin{cases} \frac{d\rho_i}{dt} + \operatorname{div}_G^{\theta}(\rho \nabla_G S) = 0, \\ \frac{dS_i}{dt} + \frac{1}{2} \sum_{j \in N(i)} \frac{\partial \theta_{ij}(\rho)}{\partial \rho_i} (S_i - S_j)^2 = 0. \end{cases}$$
(8)

 $\nabla_G S = (S_i - S_j)_{ij}$, and $(\operatorname{div}_G^{\theta}(\rho \nabla_G S))_i = \sum_{j \in N(i)} \theta_{ij}(\rho)(S_j - S_i).$

Consider the Hamiltonian $\mathscr{H}(\rho, S) = \frac{1}{4} \sum_{(i,j) \in E} \theta_{ij}(\rho) (S_i - S_j)^2$,

Backgrounds

Motivating example

Hamiltonian process on graph

Critical point of (7) as Hamiltonian system on $\mathcal{T}^*\mathcal{P}(G)$

Notice that (7) is a constrained optimization problem, Lagrange multiplier method and KKT condition leads the system of (ρ, S)

$$\begin{cases} \frac{d\rho_i}{dt} + \operatorname{div}_G^{\theta}(\rho \nabla_G S) = 0, \\ \frac{dS_i}{dt} + \frac{1}{2} \sum_{j \in N(i)} \frac{\partial \theta_{ij}(\rho)}{\partial \rho_i} (S_i - S_j)^2 = 0. \end{cases}$$
(8)

 $\nabla_G S = (S_i - S_j)_{ij}$, and $(\operatorname{div}_G^{\theta}(\rho \nabla_G S))_i = \sum_{j \in N(i)} \theta_{ij}(\rho)(S_j - S_i).$

Consider the Hamiltonian $\mathscr{H}(\rho, S) = \frac{1}{4} \sum_{(i,j) \in E} \theta_{ij}(\rho)(S_i - S_j)^2$, set symplectic matrix $\Omega = \begin{pmatrix} I_N \\ -I_N \end{pmatrix}$, one can verify the Hamiltonian flow of $\mathscr{H}(\rho, S)$ w.r.t. Ω on $\mathcal{T}^*\mathcal{P}(G)$ is exactly (8).

Backgrounds 00000000 Motivating example

Hamiltonian process on graph 00000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Relate (8) to certain Markov process on G

Backgrounds

Motivating example

Hamiltonian process on graph

Relate (8) to certain Markov process on G

Recall the first continuity equation in (8)

$$\frac{d\rho_i}{dt} + \sum_{j \in N(i)} \theta_{ij}(\rho)(S_j - S_i) = 0,$$

nds Motivating example

Hamiltonian process on graph

Relate (8) to certain Markov process on G

Recall the first continuity equation in (8)

$$\frac{d\rho_i}{dt} + \sum_{j\in N(i)} \theta_{ij}(\rho)(S_j - S_i) = 0,$$

To figure out the random process behind it, we recast this equation in the form of *Master (Chapman–Kolmogorov) equation*

$$\frac{d\rho}{dt} = \rho Q, \tag{9}$$

where (we assume $\rho_i > 0$ for all $i \in V$)

$$Q_{ji}(t) = \mathbb{1}_{\{(i,j)\in E\}} \frac{\theta_{ij}(\rho(t))}{\rho_j(t)} (S_i(t) - S_j(t)), \ j \neq i$$
$$Q_{ii}(t) = -\sum_{j\in N(i)} Q_{ij}(t) = -\sum_{j\in N(i)} \frac{\theta_{ji}(\rho(t))}{\rho_i(t)} (S_j(t) - S_i(t))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Backgrounds

Motivating example

Hamiltonian process on graph 00000

Relate (8) to certain Markov process on G

¹V.N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations, Cambridge Tracts in Mathematics, vol. 182, Cambridge University Press, Cambridge, 2010

Backgrounds

Motivating example 0000000

Hamiltonian process on graph 00000

Relate (8) to certain Markov process on G

The matrix Q is called the *transition rate matrix*, the Master equation (9) corresponds to a Markov process if Q satisfies

$$Q_{ii} \leq 0, \quad Q_{ij} \geq 0, \text{ for any } j \neq i, \quad \sum_{j=1}^{N} Q_{ij} = 0.$$
 (10)

¹V.N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations, Cambridge Tracts in Mathematics, vol. 182, Cambridge University Press, Cambridge, 2010

Backgrounds

Motivating example

Hamiltonian process on graph

Relate (8) to certain Markov process on G

The matrix Q is called the *transition rate matrix*, the Master equation (9) corresponds to a Markov process if Q satisfies

$$Q_{ii} \leq 0, \quad Q_{ij} \geq 0, \text{ for any } j \neq i, \quad \sum_{j=1}^{N} Q_{ij} = 0.$$
 (10)

Assume (10) holds, then (9) corresponds to a **time-inhomogeneous Markov process**¹. To be more specific, (9) corresponds to a **nonlinear Markov processes**¹ whose transition rate matrix Q depends not only on the current state i but also on the current distribution ρ .

¹V.N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations, Cambridge Tracts in Mathematics, vol. 182, Cambridge University Press, Cambridge, 2010

Backgrounds 00000000 Motivating example

Hamiltonian process on graph 00000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Relate (8) to certain Markov process on G

ackgrounds

Motivating example

Hamiltonian process on graph 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Relate (8) to certain Markov process on G

To summarize, we associate the Hamiltonian system (8) with a nonlinear Markov process

 $\frac{d\rho}{dt}=\rho Q(S,\rho),$

with transition rate matrix $Q(S, \rho)$ depending on density ρ and potential S,

ackgrounds

Motivating example

Hamiltonian process on graph 00000

Relate (8) to certain Markov process on G

To summarize, we associate the Hamiltonian system (8) with a nonlinear Markov process

 $\frac{d\rho}{dt}=\rho Q(S,\rho),$

with transition rate matrix $Q(S, \rho)$ depending on density ρ and potential S, such process is second order in the sense that time-dependent S further solves the discrete Hamilton-Jacobi equation

$$rac{dS_i}{dt}+rac{1}{2}\sum_{j\in \mathcal{N}(i)}rac{\partial heta_{ij}(
ho)}{\partial
ho_i}(S_i-S_j)^2=0.$$

Backgrounds

Motivating example

Hamiltonian process on graph •0000

Table of Contents

Motivation

Backgrounds

Motivating example

Hamiltonian process on graph

Examples

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Backgrounds

Motivating example

Hamiltonian process on graph 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hamiltonian process on a finite graph

Definition (Hamiltonian process on G)

A stochastic process $\{X_t\}$ is called a **Hamiltonian process on the graph** G if

1. The density ρ_t of X_t satisfies the following generalized Master equation,

$$\frac{d\rho_t}{dt} = \rho_t Q(S_t, \rho_t, t),$$

with

$$Q_{ij}(S, \rho, t) = \mathbb{1}_{(i,j) \in E} f_{ji}(S_j - S_i, \rho, t), \ Q_{ii}(S, \rho, t) = -\sum_{j \in N(i)} Q_{ij}(S, \rho, t).$$

And $f_{ji} : \mathbb{R} \times \mathbb{R}^+ \times \mathbb{R}^+ \cup \{0\} \to \mathbb{R}^+ \cup \{0\}$ (guarantees (10)), is a real-valued measurable function which is piece-wise continuous in the first component.

The density ρ and the potential S form a Hamiltonian system on the cotangent bundle T^{*}P(G) of the density space P(G).

Motivation	Backgrounds	Motivating example	Hamiltonian process on graph	Examples
000	0000000	0000000	00000	000000000000000000000000000000000000000

Theorem (Exact form of the Hamiltonian)

Suppose that the stochastic process $\{X_t\}_{t\geq 0}$ with density $\{\rho_t\}_{t\geq 0}$ and potential $\{S_t\}_{t\geq 0}$ forms a Hamiltonian process on the graph *G*. In addition assume that F_{ij} is the antiderivative of f_{ij} . Then the Hamiltonian always possesses the form

$$\mathscr{H}(\rho, S) = \sum_{i \in V} \sum_{j \in \mathcal{N}(i)} \rho_i F_{ji}(S_j - S_i, \rho, t) + \mathcal{V}(\rho, t),$$
(11)

where V is a function depending ρ and t. Moreover, the Hamiltonian system on $\mathcal{T}^*\mathcal{P}(G)$ is

$$\begin{split} \frac{\partial}{\partial t}\rho_i(t) &= \sum_{j \in \mathcal{N}(i)} f_{ij}(S_i - S_j, \rho, t)\rho_j - f_{ji}(S_j - S_i, \rho, t)\rho_i, \\ \frac{\partial}{\partial t}S_i(t) &= -\sum_{j \in \mathcal{N}(i)} \left(F_{ji}(S_j - S_i, \rho, t) + \rho_j \frac{\partial}{\partial \rho_i}F_{ji}(S_j - S_i, \rho, t)\right) - \frac{\partial}{\partial \rho_i}\mathcal{V}(\rho, t). \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへ⊙

Backgrounds

Motivating example

Hamiltonian process on graph

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Proposition (Properties of Hamiltonian process)

Assume that a stochastic process X_t on G is a Hamiltonian process. Then it holds that

Backgrounds

Motivating example

Hamiltonian process on graph

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition (Properties of Hamiltonian process)

Assume that a stochastic process X_t on G is a Hamiltonian process. Then it holds that

1. (preservation of symplectic form) the symplectic structure on $\mathcal{T}^*\mathcal{P}(G)$ is preserved, i.e.,

$$\omega_{g(\rho,S)}(g'(\rho,S)\xi,g'(\rho,S)\eta)=\omega_{(\rho,S)}(\xi,\eta),$$

where ω denotes the symplectic form on $\mathcal{T}^*\mathcal{P}(G)$, $\xi, \eta \in \mathcal{T}_{(\rho,S)}(\mathcal{T}^*\mathcal{P}(G))$ and $g'(\rho, S)$ is the Jacobi matrix of the Hamiltonian flow g on $\mathcal{T}^*\mathcal{P}(G)$;

Backgrounds 00000000 Motivating example

Hamiltonian process on graph

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition (Properties of Hamiltonian process)

Assume that a stochastic process X_t on G is a Hamiltonian process. Then it holds that

1. (preservation of symplectic form) the symplectic structure on $\mathcal{T}^*\mathcal{P}(G)$ is preserved, i.e.,

$$\omega_{g(\rho,S)}(g'(\rho,S)\xi,g'(\rho,S)\eta)=\omega_{(\rho,S)}(\xi,\eta),$$

where ω denotes the symplectic form on $\mathcal{T}^*\mathcal{P}(G)$, $\xi, \eta \in \mathcal{T}_{(\rho,S)}(\mathcal{T}^*\mathcal{P}(G))$ and $g'(\rho, S)$ is the Jacobi matrix of the Hamiltonian flow g on $\mathcal{T}^*\mathcal{P}(G)$;

(conservation of energy) H(t) = H(0), if the Hamiltonian H is independent of t;

Backgrounds

Motivating example

Hamiltonian process on graph

Proposition (Properties of Hamiltonian process)

Assume that a stochastic process X_t on G is a Hamiltonian process. Then it holds that

1. (preservation of symplectic form) the symplectic structure on $\mathcal{T}^*\mathcal{P}(G)$ is preserved, i.e.,

$$\omega_{g(\rho,S)}(g'(\rho,S)\xi,g'(\rho,S)\eta)=\omega_{(\rho,S)}(\xi,\eta),$$

where ω denotes the symplectic form on $\mathcal{T}^*\mathcal{P}(G)$, $\xi, \eta \in \mathcal{T}_{(\rho,S)}(\mathcal{T}^*\mathcal{P}(G))$ and $g'(\rho, S)$ is the Jacobi matrix of the Hamiltonian flow g on $\mathcal{T}^*\mathcal{P}(G)$;

- (conservation of energy) H(t) = H(0), if the Hamiltonian H is independent of t;
- 3. (conservation of mass) X_t preserves mass, i.e., $\sum_{i=1}^{N} \rho_i(t) = \sum_{i=1}^{N} \rho_i(0)$.

Hamiltonian process on graph

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Particle-level properties of Hamiltonian process

Q: We have argued that a Hamiltonian system on $\mathcal{P}(G)$ leads the Hamiltonian process $\{X_t\}$ on G, can we endow any Hamiltonian property such as energy conservation to such process on G?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Particle-level properties of Hamiltonian process

Q: We have argued that a Hamiltonian system on $\mathcal{P}(G)$ leads the Hamiltonian process $\{X_t\}$ on G, can we endow any Hamiltonian property such as energy conservation to such process on G?

A: Yes, but in the sense of the expectation of energy.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Particle-level properties of Hamiltonian process

Q: We have argued that a Hamiltonian system on $\mathcal{P}(G)$ leads the Hamiltonian process $\{X_t\}$ on G, can we endow any Hamiltonian property such as energy conservation to such process on G?

A: **Yes**, but in the sense of the **expectation of energy**. Consider the Hamiltonian with specific form (separable + linear potential)

$$\mathscr{H}(\rho, S) = \sum_{i \in V} \sum_{j \in N(i)} \rho_j F_{ji}(S_j - S_i) + \sum_{i \in V} \rho_i V_i.$$

Particle-level properties of Hamiltonian process

Q: We have argued that a Hamiltonian system on $\mathcal{P}(G)$ leads the Hamiltonian process $\{X_t\}$ on G, can we endow any Hamiltonian property such as energy conservation to such process on G?

A: Yes, but in the sense of the expectation of energy. Consider the Hamiltonian with specific form (separable + linear potential)

$$\mathscr{H}(\rho, S) = \sum_{i \in V} \sum_{j \in N(i)} \rho_j F_{ji}(S_j - S_i) + \sum_{i \in V} \rho_i V_i.$$

Suppose that $\{X(t)\}$ is associated with the Hamiltonian \mathcal{H} . Then one can verify the expectation of energy $\mathbb{E}[H(X(t), S(t))]$ with

$$H(X(t), S(t)) = \sum_{j \in N(X(t))} F_{jX(t)}(S_j(t) - S_{X(t)}(t)) + V_{X(t)}.$$

remains constant as time t evolves.

Backgrounds

Motivating example 00000000

Hamiltonian process on graph 00000

Table of Contents

Motivation

Backgrounds

Motivating example

Hamiltonian process on graph

Examples

- ◆ ロ ▶ ◆ 昼 ▶ ◆ 臣 ▶ → 臣 → の � ()

Backgrounds

Motivating example

Hamiltonian process on graph

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Example 1: Optimal transport on graph Recall the Hamiltonian system (8) derived for OT problem on graph (7) as

$$\frac{d\rho_i}{dt} + \sum_{j \in \mathcal{N}(i)} \theta_{ij}(\rho)(S_j - S_i) = 0, \quad \frac{dS_i}{dt} + \frac{1}{2} \sum_{j \in \mathcal{N}(i)} \frac{\partial \theta_{ij}(\rho)}{\partial \rho_i} (S_i - S_j)^2 = 0.$$
(12)

Backgrounds

Motivating example

Hamiltonian process on graph

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example 1: Optimal transport on graph Recall the Hamiltonian system (8) derived for OT problem on graph (7) as

$$\frac{d\rho_i}{dt} + \sum_{j \in \mathcal{N}(i)} \theta_{ij}(\rho)(S_j - S_i) = 0, \quad \frac{dS_i}{dt} + \frac{1}{2} \sum_{j \in \mathcal{N}(i)} \frac{\partial \theta_{ij}(\rho)}{\partial \rho_i} (S_i - S_j)^2 = 0.$$
(12)

To guarantee the existence of Markov process, we recall (10).

Backgrounds

Motivating example

Hamiltonian process on graph

Example 1: Optimal transport on graph Recall the Hamiltonian system (8) derived for OT problem on graph (7) as

$$\frac{d\rho_i}{dt} + \sum_{j \in \mathcal{N}(i)} \theta_{ij}(\rho)(S_j - S_i) = 0, \quad \frac{dS_i}{dt} + \frac{1}{2} \sum_{j \in \mathcal{N}(i)} \frac{\partial \theta_{ij}(\rho)}{\partial \rho_i} (S_i - S_j)^2 = 0.$$
(12)

To guarantee the existence of Markov process, we recall (10). Common choices of θ such as

• (Arithmetic mean) $\theta_{ij}^A(\rho) = \frac{\rho_i + \rho_j}{2}$;

• (Geometric mean) $\theta_{ij}^G(\rho) = \sqrt{\rho_i \rho_j}$; will not satisfy (10).

Backgrounds

Motivating example

Hamiltonian process on graph

Example 1: Optimal transport on graph Recall the Hamiltonian system (8) derived for OT problem on graph (7) as

$$\frac{d\rho_i}{dt} + \sum_{j \in \mathcal{N}(i)} \theta_{ij}(\rho)(S_j - S_i) = 0, \quad \frac{dS_i}{dt} + \frac{1}{2} \sum_{j \in \mathcal{N}(i)} \frac{\partial \theta_{ij}(\rho)}{\partial \rho_i} (S_i - S_j)^2 = 0.$$
(12)

To guarantee the existence of Markov process, we recall (10). Common choices of θ such as

- (Arithmetic mean) $\theta_{ij}^A(\rho) = \frac{\rho_i + \rho_j}{2}$;
- (Geometric mean) $\theta_{ij}^G(\rho) = \sqrt{\rho_i \rho_j};$

will not satisfy (10).

But fortunately, we have a feasible choice:

• (Upwind choice)
$$\theta_{ij}^U(\rho) = \begin{cases} \rho_j & S_j < S_i \\ \rho_i & S_i < S_j \end{cases}$$

Examples

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Under the Upwind choice, (12) becomes

$$\frac{d\rho_i}{dt} = \sum_{j \in N(i)} \rho_j (S_j - S_i)^- - \rho_i (S_j - S_i)^+, \quad \frac{dS_i}{dt} + \frac{1}{2} \sum_{j \in N(i)} ((S_j - S_i)^+)^2 = 0.$$
(13)
Here we define the positive part of $x \in \mathbb{R}$ as $(x)^+ = \max\{x, 0\}$,

and the negative part as $(x)^- = \max\{-x, 0\}$.

Backgrounds

Motivating example

Hamiltonian process on graph

Examples

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Under the Upwind choice, (12) becomes

$$\frac{d\rho_i}{dt} = \sum_{j \in N(i)} \rho_j (S_j - S_i)^- - \rho_i (S_j - S_i)^+, \quad \frac{dS_i}{dt} + \frac{1}{2} \sum_{j \in N(i)} ((S_j - S_i)^+)^2 = 0.$$
(13)

Here we define the positive part of $x \in \mathbb{R}$ as $(x)^+ = \max\{x, 0\}$, and the negative part as $(x)^- = \max\{-x, 0\}$. If we write the first equation as Master equation $d_t\rho_t = \rho_t Q$, then

$$Q_{ji}(S, \rho, t) = \mathbf{1}_{(i,j)\in E}(S_j - S_i)^- = \mathbf{1}_{(i,j)\in E}(S_i - S_j)^+, \ j \neq i$$
$$Q_{ii}(S, \rho, t) = -\sum_{j=1}^N Q_{ij}(t) = -\sum_{j\in N(i)} (S_j - S_i)^+.$$

Backgrounds 00000000 Motivating example

Hamiltonian process on graph

Under the Upwind choice, (12) becomes

$$\frac{d\rho_i}{dt} = \sum_{j \in \mathcal{N}(i)} \rho_j (S_j - S_i)^- - \rho_i (S_j - S_i)^+, \quad \frac{dS_i}{dt} + \frac{1}{2} \sum_{j \in \mathcal{N}(i)} ((S_j - S_i)^+)^2 = 0.$$
(13)

Here we define the positive part of $x \in \mathbb{R}$ as $(x)^+ = \max\{x, 0\}$, and the negative part as $(x)^- = \max\{-x, 0\}$. If we write the first equation as Master equation $d_t\rho_t = \rho_t Q$, then

$$Q_{ji}(S,\rho,t) = 1_{(i,j)\in E}(S_j - S_i)^- = 1_{(i,j)\in E}(S_i - S_j)^+, \ j \neq i$$
$$Q_{ii}(S,\rho,t) = -\sum_{j=1}^N Q_{ij}(t) = -\sum_{j\in N(i)} (S_j - S_i)^+.$$

We verify $Q_{ji}(S, \rho, t) = f_{ij}(S_i - S_j, \rho, t) = \mathbf{1}_{(i,j) \in E}(S_i - S_j)^+ \ge 0$. Thus (10) is guaranteed and there exists a Markov process associated to Hamiltonian system (13).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Backgrounds

Motivating example

Hamiltonian process on graph

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

æ

We can also verify that
$$F_{ij}(S_i - S_j, \rho, t) = \frac{1}{2} \mathbb{1}_{(i,j) \in E} ((S_i - S_j)^+)^2$$
,
and the Hamiltonian

$$\mathscr{H}(\rho,S) = \sum_{i \in V} \sum_{j \in N(i)} \rho_i F_{ji}(S_j - S_i, \rho, t) = \sum_{i \in V} \sum_{j \in N(i)} \frac{1}{2} \rho_i ((S_j - S_i)^+)^2.$$

Backgrounds

Motivating example

Hamiltonian process on graph

Examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We can also verify that $F_{ij}(S_i - S_j, \rho, t) = \frac{1}{2} \mathbb{1}_{(i,j) \in E} ((S_i - S_j)^+)^2$, and the Hamiltonian

$$\mathscr{H}(\rho,S) = \sum_{i \in V} \sum_{j \in \mathcal{N}(i)} \rho_i F_{ji}(S_j - S_i, \rho, t) = \sum_{i \in V} \sum_{j \in \mathcal{N}(i)} \frac{1}{2} \rho_i ((S_j - S_i)^+)^2.$$

Furthermore, the expectation of energy

$$\mathbb{E}_{X_t}\left[\sum_{j\in N(X(t))} \frac{1}{2} ((S_j(t) - S_{X(t)}(t))^+)^2\right]$$

of the Hamiltonian process $\{X_t\}$ will be conserved for $t \ge 0$.
kgrounds

Motivating example

Hamiltonian process on graph 00000 Examples

Example 2: Schrödinger Bridge Problem (SBP) on graph

Background of SBP¹ on \mathbb{R}^d

¹C. Léonard, A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete Contin. Dyn. Syst. 34 (4) (2014)

Hamiltonian process on graph 00000

Examples

Example 2: Schrödinger Bridge Problem (SBP) on graph

Background of SBP¹ on \mathbb{R}^d

• R: the reference path measure of Brownian motion on $(\mathbb{R}^d)^{[0,1]}$;

¹C. Léonard, A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete Contin. Dyn. Syst. 34 (4) (2014) $\sim \propto \sim$

vation Backgrour

Examples

Example 2: Schrödinger Bridge Problem (SBP) on graph

Background of SBP¹ on \mathbb{R}^d

- R: the reference path measure of Brownian motion on $(\mathbb{R}^d)^{[0,1]}$;
- P: the path measure of certain stochastic process on (ℝ^d)^[0,1] with fixed marginals at t = 0, 1, P₀ = ρ_a, P₁ = ρ_b.

¹C. Léonard, A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete Contin. Dyn. Syst. 34 (4) (2014)

Example 2: Schrödinger Bridge Problem (SBP) on graph

Background of SBP¹ on \mathbb{R}^d

- R: the reference path measure of Brownian motion on $(\mathbb{R}^d)^{[0,1]}$;
- P: the path measure of certain stochastic process on (ℝ^d)^[0,1] with fixed marginals at t = 0, 1, P₀ = ρ_a, P₁ = ρ_b.
- **SBP**: minimize the relative entropy between P and R

$$\min_{P} \left\{ \mathcal{H}(P|R) = \int_{(\mathbb{R}^d)^{[0,1]}} \log\left(\frac{dP}{dR}\right) \ dP \right\}, \ P_0 = \rho_a, P_1 = \rho_b.$$
(14)

¹C. Léonard, A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete Contin. Dyn. Syst. 34 (4) (2014)

Backgrounds

Motivating example

Hamiltonian process on graph 00000

Examples

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Two equivalent formulations of SBP on \mathbb{R}^d

Backgrounds

Motivating example

Hamiltonian process on graph 00000

Examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Two equivalent formulations of SBP on \mathbb{R}^d

• (14) can be reduced to an optimal control problem on $\mathcal{P}(\mathbb{R}^d)$

$$\min\{\mathcal{H}(P|R): P_0 = \rho_a, P_1 = \rho_b\} - \mathcal{H}(\rho_a|Leb)$$
(15)
$$= \min_{\rho, v} \left\{ \int_0^1 \int_{\mathbb{R}^d} \frac{|v_t|^2}{2} \rho_t \, dx dt : (\partial_t - \frac{\Delta}{2})\rho_t + \nabla \cdot (v_t \rho_t) = 0, \right.$$
$$P_0 = \rho_a, P_1 = \rho_b \right\}$$

Backgrounds

Motivating example

Hamiltonian process on graph 00000

Examples

Two equivalent formulations of SBP on \mathbb{R}^d

• (14) can be reduced to an optimal control problem on $\mathcal{P}(\mathbb{R}^d)$

$$\min\{\mathcal{H}(P|R): P_0 = \rho_a, P_1 = \rho_b\} - \mathcal{H}(\rho_a|Leb)$$
(15)
$$= \min_{\rho, v} \left\{ \int_0^1 \int_{\mathbb{R}^d} \frac{|v_t|^2}{2} \rho_t \, dx dt : (\partial_t - \frac{\Delta}{2})\rho_t + \nabla \cdot (v_t \rho_t) = 0, \right.$$
$$P_0 = \rho_a, P_1 = \rho_b \right\}$$

• By replacing $\tilde{v}_t = v_t - \nabla \log \rho_t$, (15) can be casted as

$$\min_{\rho, \tilde{v}} \left\{ \int_0^1 \int_{\mathbb{R}^d} \frac{|\tilde{v}_t|^2}{2} \rho_t dx + \frac{1}{8} \mathcal{I}(\rho_t) dt : \frac{\partial_t \rho_t + \nabla \cdot (\tilde{v}_t \rho_t) = 0}{P_0 = \rho_a, P_1 = \rho_b} \right\}$$
(16)

Here $\mathcal{I}(\rho) = \int |\nabla \log \rho|^2 \rho \, dx$ is the Fisher Information of ρ .

Backgrounds

Motivating example

Hamiltonian process on graph 00000

Examples

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Optimal solutions to SBP on \mathbb{R}^d as Hamiltonian systems

Backgrounds

Motivating example

Hamiltonian process on graph 00000

Examples

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Optimal solutions to SBP on \mathbb{R}^d as Hamiltonian systems

• optimal solution of (15) leads to

$$egin{aligned} &(\partial_t-rac{\Delta}{2})
ho+
abla\cdot(
abla\phi
ho)=0,\
ho(0)=
ho_0,\ &(\partial_t+rac{\Delta}{2})\phi+rac{1}{2}|
abla\phi|^2=0,\ \phi(1)=\log(g_1), \end{aligned}$$

it is the Hamiltonian flow of $\mathscr{H}(\rho, \phi) = \int \frac{1}{2} |\nabla \phi|^2 \rho - \nabla \rho \cdot \nabla \phi \, dx$.

Backgrounds 00000000 Motivating example

Hamiltonian process on graph

Examples

Optimal solutions to SBP on \mathbb{R}^d as Hamiltonian systems

• optimal solution of (15) leads to

$$egin{aligned} &(\partial_t-rac{\Delta}{2})
ho+
abla\cdot(
abla\phi
ho)=0,\
ho(0)=
ho_0,\ &(\partial_t+rac{\Delta}{2})\phi+rac{1}{2}|
abla\phi|^2=0,\ \phi(1)=\log(g_1), \end{aligned}$$

it is the Hamiltonian flow of $\mathscr{H}(\rho, \phi) = \int \frac{1}{2} |\nabla \phi|^2 \rho - \nabla \rho \cdot \nabla \phi \, dx.$

• optimal solution of (16) leads to

$$egin{aligned} &\partial_t
ho+
abla\cdot(
ho
abla S)=0,\
ho(0)=
ho_0,\ &\partial_tS+rac{1}{2}|
abla S|^2=rac{1}{8}rac{\delta}{\delta
ho}\mathcal{I}(
ho),\ \phi(1)=\log(g_1), \end{aligned}$$

it is the Hamiltonian flow of $\mathscr{H}(\rho, S) = \int \frac{1}{2} |\nabla S|^2 \rho \ dx - \frac{1}{8} \mathcal{I}(\rho).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Backgrounds 00000000 Motivating example

Hamiltonian process on graph

Examples

Optimal solutions to SBP on \mathbb{R}^d as Hamiltonian systems

• optimal solution of (15) leads to

$$egin{aligned} &(\partial_t-rac{\Delta}{2})
ho+
abla\cdot(
abla\phi
ho)=0,\
ho(0)=
ho_0,\ &(\partial_t+rac{\Delta}{2})\phi+rac{1}{2}|
abla\phi|^2=0,\ \phi(1)=\log(g_1), \end{aligned}$$

it is the Hamiltonian flow of $\mathscr{H}(\rho, \phi) = \int \frac{1}{2} |\nabla \phi|^2 \rho - \nabla \rho \cdot \nabla \phi \, dx$.

• optimal solution of (16) leads to

$$egin{aligned} &\partial_t
ho +
abla \cdot (
ho
abla S) = 0, \
ho(0) =
ho_0, \ &\partial_t S + rac{1}{2} |
abla S|^2 = rac{1}{8} rac{\delta}{\delta
ho} \mathcal{I}(
ho), \ \phi(1) = \log(g_1), \end{aligned}$$

it is the Hamiltonian flow of $\mathscr{H}(\rho, S) = \int \frac{1}{2} |\nabla S|^2 \rho \ dx - \frac{1}{8} \mathcal{I}(\rho).$

• (ρ, ϕ) and (ρ, S) are related via the symplectic transform τ on $\mathcal{T}^*\mathcal{P}(\mathbb{R}^d)$, i.e., $(\rho, S) = \tau(\rho, \phi) = (\rho, \phi - \log \rho)$.

・ロト・西ト・西ト・西ト・日・ シック

Backgrounds

Motivating example

Hamiltonian process on graph 00000

Examples 000000000000000

SBP on graph

Two ways to discretize SBP:

1. Discretize from (14);

Backgrounds

Motivating example

Hamiltonian process on graph 00000

Examples 000000000000000

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

SBP on graph

Two ways to discretize SBP:

- 1. Discretize from (14);
- 2. Discretize from (16).

Backgrounds

Motivating example

Hamiltonian process on graph 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

SBP on graph

Two ways to discretize SBP:

- 1. Discretize from (14);
- 2. Discretize from (16).

In our research, they will lead to **different** Hamiltonian processes on *G* even though (14) and (16) are equivalent in continuous space \mathbb{R}^d .

rounds Ma

Hamiltonian process on graph

Examples

First way of discretization:

Based on entropy-minimization formulation (14),

Consider R as the reference path measure on G^[0,1] whose marginal {ρ̃_t} solves d_tρ̃_i = Σ_{j∈N(i)} m^t_{ji}ρ̃_j - m^t_{ij}ρ̃_i.

¹C. Léonard, Girsanov theory under a finite entropy condition, in: Séminaire de Probabilités XLIV, in: Lecture Notes in Math., vol. 2046, Springer, Heidelberg, 2012

unds Motiv 200 0000 Hamiltonian process on graph

Examples

First way of discretization:

Based on entropy-minimization formulation (14),

- Consider *R* as the reference path measure on *G*^[0,1] whose marginal {*p˜*_t} solves *d*_t*p˜*_i = ∑_{j∈N(i)} *m^t_{ji} p˜*_j − *m^t_{ij} p˜*_i.
- Consider P as the path measure of certain stochastic process on G^[0,1] whose marginal ρ₀ = ρ_a, ρ₁ = ρ_b are fixed, and {ρ_t} solves d_tρ_i = Σ_{j∈N(i)} m^t_{ji}ρ_j − m^t_{ij}ρ_i.

¹C. Léonard, Girsanov theory under a finite entropy condition, in: Séminaire de Probabilités XLIV, in: Lecture Notes in Math., vol. 2046, Springer, Heidelberg, 2012 $(\Box \rightarrow \langle \Box \rangle + \langle \Xi Z = \langle \Xi \rangle + \langle \Xi Z = \langle \Xi Z =$

grounds N 20000 c Hamiltonian process on 00000 Examples

First way of discretization:

Based on entropy-minimization formulation (14),

- Consider *R* as the reference path measure on *G*^[0,1] whose marginal {*p˜*_t} solves *d*_t*p˜*_i = ∑_{j∈N(i)} *m^t_{ji} p˜*_j − *m^t_{ij} p˜*_i.
- Consider P as the path measure of certain stochastic process on G^[0,1] whose marginal ρ₀ = ρ_a, ρ₁ = ρ_b are fixed, and {ρ_t} solves d_tρ_i = Σ_{j∈N(i)} m^t_{ji}ρ_j − m^t_{ij}ρ_i.
- One can compute the relative entropy $\mathcal{H}(P|R)$ as¹

$$\mathcal{H}(P|R) = \int_0^1 \sum_{i \in V} \rho(i, t) \sum_{j \in \mathcal{N}(i)} \left(\frac{\widehat{m}_{ij}^t}{m_{ij}^t} \log \left(\frac{\widehat{m}_{ij}^t}{m_{ij}^t} \right) - \frac{\widehat{m}_{ij}^t}{m_{ij}^t} + 1 \right) m_{ij}^t dt.$$

¹C. Léonard, Girsanov theory under a finite entropy condition, in: Séminaire de Probabilités XLIV, in: Lecture Notes in Math., vol. 2046, Springer, Heidelberg, 2012

ckgrounds

Motivating example

Hamiltonian process on graph

Examples

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

First way of discretization:

Then the Schrödinger Bridge Problem on G is formulated as

$$\min_{\widehat{m}^{t} \ge 0} \left\{ \int_{0}^{1} \sum_{i \in V} \rho(i, t) \sum_{j \in \mathcal{N}(i)} \left(\frac{\widehat{m}_{ij}^{t}}{m_{ij}^{t}} \log \left(\frac{\widehat{m}_{ij}^{t}}{m_{ij}^{t}} \right) - \frac{\widehat{m}_{ij}^{t}}{m_{ij}^{t}} + 1 \right) m_{ij}^{t} dt \right\}$$
subject to:
$$\frac{d}{dt} \rho(i, t) = \sum_{j \in \mathcal{N}(i)} \widehat{m}_{ji}^{t} \rho_{j} - \widehat{m}_{ij}^{t} \rho_{i} \quad \rho(\cdot, 0) = \rho_{a}, \ \rho(\cdot, 1) = \rho_{b}.$$
(17)

ockgrounds

Motivating example

Hamiltonian process on graph

Examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

First way of discretization:

Then the Schrödinger Bridge Problem on G is formulated as

$$\min_{\tilde{m}^{t} \ge 0} \left\{ \int_{0}^{1} \sum_{i \in V} \rho(i, t) \sum_{j \in N(i)} \left(\frac{\widehat{m}_{ij}^{t}}{m_{ij}^{t}} \log \left(\frac{\widehat{m}_{ij}^{t}}{m_{ij}^{t}} \right) - \frac{\widehat{m}_{ij}^{t}}{m_{ij}^{t}} + 1 \right) m_{ij}^{t} dt \right\}$$
subject to:
$$\frac{d}{dt} \rho(i, t) = \sum_{j \in N(i)} \widehat{m}_{ji}^{t} \rho_{j} - \widehat{m}_{ij}^{t} \rho_{i} \quad \rho(\cdot, 0) = \rho_{a}, \ \rho(\cdot, 1) = \rho_{b}.$$
(17)

By introducing Lagrange multiplier S, the KKT condition yields to the system

$$\frac{d}{dt}\rho_{i} = \sum_{j\in N(i)} -e^{S_{j}-S_{i}}m_{ij}^{t}\rho_{i} + e^{S_{i}-S_{j}}m_{ji}^{t}\rho_{j},$$

$$\frac{d}{dt}S_{i} = -\sum_{j\in N(i)} (e^{S_{j}-S_{i}}-1)m_{ij}^{t}.$$
(18)

ackgrounds 0000000 Motivating example

Hamiltonian process on graph 00000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

First way of discretization:

ackgrounds 0000000 Motivating example

Hamiltonian process on graph 00000

Examples

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

First way of discretization:

One can verify that (18) is a Hamiltonian system with the Hamiltonian

$$\mathscr{H}(\rho, S, t) = \sum_{i \in V} \sum_{j \in N(i)} (\exp(S_j - S_i) - 1) m_{ij}^t \rho_i.$$

Furthermore, we can verify the transition rate

$$Q_{ji}(S,\rho,t)=f_{ij}(S_i-S_j,\rho,t)=e^{S_i-S_j}m_{ji}^t\geq 0.$$

We can construct a nonlinear Markov process associated to the solution (18) of Schrödinger Bridge problem (17).

ockgrounds

Motivating example

Hamiltonian process on graph 00000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Second way of discretization:

inds Motiv

Hamiltonian process on graph

Examples

Second way of discretization:

Based on action-minimizing formulation (16), We consider the optimal control problem

$$\min_{\rho,\nu} \left\{ \int_{0}^{1} (\langle v, v \rangle_{\theta} \upsilon_{(\rho)} + \frac{1}{8} \mathcal{I}_{G}(\rho)) dt \right\},$$

$$\partial \rho + \operatorname{div}_{G}^{\theta \upsilon}(\rho v) = 0, \ \rho(\cdot, 0) = \rho_{a}, \ \rho(\cdot, 1) = \rho_{b}.$$
(19)

Recall

$$\langle \mathbf{v}, \mathbf{v} \rangle_{\theta(\rho)} = \frac{1}{2} \sum_{(j,l) \in E} \theta_{jl}(\rho) \mathbf{v}_{jl}^2, \quad (\operatorname{div}_G^{\theta}(\rho \mathbf{v}))_j = - \sum_{l \in \mathcal{N}(j)} \theta_{jl}(\rho) \mathbf{v}_{jl},$$

defined as before. We directly discretize Fisher Information $\mathcal{I}(\rho)$ and define

$${\mathcal I}_{\mathcal G}(\rho) = rac{1}{2} \sum_{(i,j)\in {\mathcal E}} (\log(
ho_i) - \log(
ho_j))^2 \widetilde{ heta}_{ij}(
ho),$$

where $\tilde{\theta}$ is some weight function, not necessarily equal to θ^U before.

ackgrounds 0000000 Motivating example

Hamiltonian process on graph 00000

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Second way of discretization:

ckgrounds

Motivating example

Hamiltonian process on graph

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Second way of discretization:

Similar to our previous treatments, recall we are using the upwind weight θ^U , we can verify the optimal solution is solved by the following Hamiltonian system

$$\frac{d\rho_i}{dt} = \sum_{j \in N(i)} \rho_j (S_j - S_i)^- - \rho_i (S_j - S_i)^+,$$

$$\frac{dS_i}{dt} + \frac{1}{2} \sum_{j \in N(i)} ((S_j - S_i)^+)^2 = \frac{1}{8} \frac{\partial}{\partial \rho_i} \mathcal{I}_G(\rho).$$
(20)

ckgrounds

Motivating example

Hamiltonian process on graph

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Second way of discretization:

Similar to our previous treatments, recall we are using the upwind weight θ^U , we can verify the optimal solution is solved by the following Hamiltonian system

$$\frac{d\rho_i}{dt} = \sum_{j \in N(i)} \rho_j (S_j - S_i)^- - \rho_i (S_j - S_i)^+,$$

$$\frac{dS_i}{dt} + \frac{1}{2} \sum_{j \in N(i)} ((S_j - S_i)^+)^2 = \frac{1}{8} \frac{\partial}{\partial \rho_i} \mathcal{I}_G(\rho).$$
(20)

It is not hard to verify the Hamiltonian of (20) is

$$\mathscr{H}(\rho, S) = \frac{1}{2} \sum_{i \in V} \sum_{j \in N(i)} \rho_i ((S_j - S_i)^+)^2 - \frac{1}{8} \mathcal{I}_G(\rho).$$
(21)

rounds Mo 2000 00 Hamiltonian process on graph

Examples

Second way of discretization:

Similar to our previous treatments, recall we are using the upwind weight θ^U , we can verify the optimal solution is solved by the following Hamiltonian system

$$\frac{d\rho_i}{dt} = \sum_{j \in N(i)} \rho_j (S_j - S_i)^- - \rho_i (S_j - S_i)^+,$$

$$\frac{dS_i}{dt} + \frac{1}{2} \sum_{j \in N(i)} ((S_j - S_i)^+)^2 = \frac{1}{8} \frac{\partial}{\partial \rho_i} \mathcal{I}_G(\rho).$$
(20)

It is not hard to verify the Hamiltonian of (20) is

$$\mathscr{H}(\rho, S) = \frac{1}{2} \sum_{i \in V} \sum_{j \in N(i)} \rho_i ((S_j - S_i)^+)^2 - \frac{1}{8} \mathcal{I}_G(\rho).$$
(21)

By aforementioned argument regarding upwind θ^U , we can also associated (20) with a nonlinear Markov process as the solution to Schrödinger Bridge problem (19).

Backgrounds 00000000 Motivating example

Hamiltonian process on graph 00000

Comparison of two SBPs on graph

	Entropy-minimization SBP	Action-minimization SBP
Origin	Derived from (17)	Derived from (16)
Hamiltonian	$\frac{d}{dt}\rho_t = \rho_t Q(S_t, t)$	$rac{d}{dt} ho_t= ho_t Q(S_t)$
system	$rac{d}{dt}S_i = -\sum_{j\in N(i)}(e^{S_j-S_i}-1)m_{ij}^t$	$\frac{dS_i}{dt} + \frac{1}{2}\sum_{j \in N(i)} ((S_j - S_i)^+)^2 = \frac{1}{8}\frac{\partial}{\partial \rho_i} \mathcal{I}_{\mathcal{G}}(\rho)$
\mathscr{H}	$\sum_{i \in V} \sum_{j \in N(i)} (\exp(S_j - S_i) - 1) m_{ij}^t \rho_i$	$\frac{1}{2} \sum_{i \in V} \sum_{j \in N(i)} \rho_i ((S_j - S_i)^+)^2 - \frac{1}{8} \mathcal{I}_G(\rho)$
$Q_{ji}, j \neq i$	$e^{S_{j}-S_{j}}m_{ji}^{t}\geq 0$ Hamiltonian process exists	$(S_i-S_j)^+$ Hamiltonian process exists
Reference R	stochastic process induced by	stochastic process induced by nonlinear generator
	linear generator $Q = \{m_{ij}^t\}$	related to the Fisher Information ${\mathcal I}_G(ho)$

• For more discussion on the *periodicity* of Schrödinger Bridge problems, please check our work¹.

¹J. Cui, S. Liu, H. Zhou, What is a stochastic Hamiltonian process on finite graph? An optimal transport answer, Journal of Differential Equations, $2021 \ge 10^{-10}$

Backgrounds

Motivating example

Hamiltonian process on graph 00000

Examples 000000000000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion & Future direction

In this work, we introduce a novel definition and theoretical framework for Hamiltonian process on graph.

Backgrounds

Motivating example

Hamiltonian process on graph 00000

Examples 0000000000000000000

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Conclusion & Future direction

In this work, we introduce a novel definition and theoretical framework for Hamiltonian process on graph.

Possible future research directions

Hamiltonian process on graph 00000

Examples

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion & Future direction

In this work, we introduce a novel definition and theoretical framework for Hamiltonian process on graph.

Possible future research directions

 Well posedness & long time existence of the proposed Hamiltonian process;

Examples 00000000000000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion & Future direction

In this work, we introduce a novel definition and theoretical framework for Hamiltonian process on graph.

Possible future research directions

- 1. Well posedness & long time existence of the proposed Hamiltonian process;
- 2. Consistency between the proposed Hamiltonian process on graph and Hamiltonian dynamics in continuous space;

Hamiltonian process on graph 00000 Examples 00000000000000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conclusion & Future direction

In this work, we introduce a novel definition and theoretical framework for Hamiltonian process on graph.

Possible future research directions

- 1. Well posedness & long time existence of the proposed Hamiltonian process;
- 2. Consistency between the proposed Hamiltonian process on graph and Hamiltonian dynamics in continuous space;
- 3. Optimal mean-field control on graph.

Backgrounds 00000000 Motivating example

Hamiltonian process on graph 00000

Examples 00000000000000

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Thank you!

Welcome to any comments or questions.