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Abstract

We present a definition of stochastic Hamiltonian process on finite graph via its corresponding density 
dynamics in Wasserstein manifold. We demonstrate the existence of stochastic Hamiltonian process in many 
classical discrete problems, such as the optimal transport problem, Schrödinger equation and Schrödinger 
bridge problem (SBP). The stationary and periodic properties of Hamiltonian processes are also investigated 
in the framework of SBP.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

Hamiltonian systems, including both ordinary or partial differential equations (ODEs or PDEs 
respectively), are ubiquitous in applications. Their mathematical studies have a long and rich 
history (see e.g., [25,1,21]). Traditionally, the ambient space on which to define a Hamiltonian 
system is continuous, such as Euclidean space Rn or smooth manifolds like torus T 2. What is 
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a Hamiltonian process if the underlying space becomes discrete, such as a finite graph? This is 
the question that we would like to explore within the framework of optimal transport (OT) in this 
study.

Our motivation to consider this question is 3-fold. Curiosity is at the first place. Secondly, 
the notion of gradient flow on graph has been investigated extensively using OT theory (see 
e.g. [19,7] and references therein). For example, an irreducible and reversible continuous time 
Markov chain on graph can be viewed as the gradient flow of entropy with respect to the discrete 
Wasserstein metric [19]. Naturally, we are inspired to ask whether the concept of Hamiltonian 
process on graph exists or not. To the best of our knowledge, the Hamiltonian mechanics on 
graph has not been explored yet. Finally and most importantly, recent developments in several 
practical problems, which can be defined in both continuous and discrete spaces, demonstrate 
Hamiltonian principles on graph. They are

(i) the OT problem (see e.g. [30]),

W 2
2 (ρ0, ρ1) = inf

v

{ 1∫
0

E[|Ẋt |2]dt : Ẋt = v(t,Xt ),X0 ∼ ρ0,X1 ∼ ρ1
}
, (1)

(ii) the SBP (see e.g. [26]),

inf
v

{ 1∫
0

1

2
E[|v(t,Xt )|2]dt : Ẋt = v(t,Xt ) + √

h̄Ḃt , X0 ∼ ρ0, X1 ∼ ρ1
}

(2)

and (iii) the Schrödinger equation (see e.g. [23,20,9]),

inf
v

{ T∫
0

1

2
E[|Ẋt |2]dt : Ẋt = v(t,Xt ) + √

h̄Ḃt , X0 ∼ ρ0, X1 ∼ ρ1
}
. (3)

The above formulations are presented in Euclidean space where v ∈ Rd can be any smooth vector 
field, Xt is a stochastic process with prescribed probability densities ρ0 and ρ1 at time 0 and 1
respectively, Bt is the standard Brownian motion and h̄ > 0 is a constant.

A common property shared by these problems is that their critical points obey the Hamiltonian 
principle. For instance, the minimizer of OT problem (1) satisfies a Hamiltonian PDE with the 
Hamiltonian H(x, v, t) = 1

2 |v|2 (see e.g. [2]). The minimizer of SBP (2) is the solution of a 
Hamiltonian PDE with H(x, v) = 1

2 |v|2 − 1
8 h̄ δ

δρ
I (ρ)(t, x) where the Fisher information I (ρ) =∫

Rd |∇ logρ(x)|2ρ(x)dx (see e.g. [24,17]). Needless to say, the critical point of (3) satisfies the
Schrödinger equation, which is a well-known Hamiltonian system. The problems stated in (1), 
(2) and (3) can be posed, with nominal changes, on a graph, and the density functions of their 
critical points have been studied on the Wasserstein manifold (see [14], [18,8], [9]) showing 
that they satisfy Hamiltonian ODEs. Based on those results, we investigate the properties of 
stochastic process X(t) and provide an answer to the question in the title of the paper within the 
OT framework.

Defining Hamiltonian process on graph must face several intrinsic difficulties. The most ob-
vious one is that X(t) is a stochastic process jumping from node to node on the graph, while 
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its continuous space counterpart trajectory is a spatial-temporal continuous function. Another 
challenge is about characteristic line. In fact, it is not clear how to define characteristic on graph. 
Furthermore, there is no reported result about examining whether a stochastic process, such as 
discrete OT and SBP, can preserve Hamiltonian along its trajectory, just like a classical Hamilto-
nian system does in continuous space.

To fill the gaps on finite graph, our idea is lifting the process on graph into a motion on its 
density manifold. To be more precise, we define the Hamiltonian process by a random process 
whose density and generators of instantaneous transition rate matrix form a Wasserstein Hamil-
tonian flow on the cotangent bundle of density manifold. Meanwhile, we show that such defined 
Hamiltonian processes exist in numerous practical problems, such as the discrete OT problem 
and SBP. Two important classes of Hamiltonian processes, namely the stationary Hamiltonian 
process and the periodic Hamiltonian process, are also discussed via the framework of SBP. 
They correspond to the invariant measure and the periodic solution of the Hamiltonian flow on 
the density space. We would like to mention that the Wasserstein Hamiltonian flow is firstly 
studied by Nelson’s mechanics (see e.g. [23,4]). It is also pointed out that the Hamiltonian flows 
in density space are probability transition equations of classical Hamiltonian ODEs (see [30,10]
and references therein).

There are several works with titles related to Hamiltonian systems on graphs, like the port-
Hamiltonian system on graphs (see e.g. [28,29] and the references therein). Our current work is 
different from them. The port-Hamiltonian systems are the generalization of classical Hamilto-
nian system which describes the dynamics in interaction with control units, energy dissipating 
or energy storing units. The graph structure is used to characterize the interaction of the systems 
with ports, and their underlying phase variables are still in continuous spaces, like Rd or smooth 
manifold.

This paper is organized as follows. In section 2, we use the discrete optimal transport problem 
as the motivation of studying the Hamiltonian process on finite graph. In section 3, we present 
the definition and several properties of the Hamiltonian process on graph. In section 4, we study 
several different Hamiltonian dynamics derived from the discrete SBP from two different per-
spectives. We also discuss the existence of stationary and periodic Hamiltonian processes of the 
discrete SBP. We provide more examples of Hamiltonian process on graph in section 5.

2. Preliminary

In this section, we first briefly recall the relationship between the continuous OT problem and 
Hamiltonian systems. Then we introduce our motivation example on a graph and review some 
notations for inhomogeneous Markov process, which is used in our definition for Hamiltonian 
process.

It is known that in a continuous OT problem (1) with given marginal distributions ρ0 and ρ1, 
the optimal transfer {Xt }t∈[0,1] induces a trajectory concentrating on the geodesic path whose 
position and momentum obey the Hamiltonian principle (see e.g. [30]). More precisely, recalling 
that H(x, v) = 1

2 |v|2, the critical point of the OT problem (1) in density manifold satisfies the 
Wasserstein–Hamiltonian flow,

∂tρ + ∇ · (∂H

∂v
(x,∇S)ρ) = 0,

∂ S + H(x,∇S) = C(t),

(4)
t
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where C(t) is a function depending only on t and v = ∇S with |∇S|2 = ∇S · ∇S. Being a 
Hamiltonian system on its own, (4) can also be connected to the following classic Hamiltonian 
system closely (see e.g. [9]):

dtv = −∂H

∂x
(X,v),

dtX = ∂H

∂v
(X,v),

(5)

where X ∈ Rd , the conjugate momenta v ∈ Rd , d ∈ N+, and the Hamiltonian H is smooth. 
If the initial position X(0) is random following a distribution with density ρ0, the trajectory 
Xt is random too. Its density function ρ, defined by the pushforward operator induced by the 
Xt , ρt = X#

t ρ
0, satisfies the Wasserstein-Hamiltonian flow (4). However, directly mimicking the 

relationship between (4) and (5) is impossible if the underlying space becomes a graph. In the 
next subsection, we illustrate the challenges in detail by an example on graph.

2.1. A motivation example

Consider a graph G = (V , E, W) with a node set V = {ai}Ni=1, an edge set E, and wjl ∈ W are 
the weights of the edges: wjl = wlj > 0, if there is an edge between aj and al , and 0 otherwise. 
Below, we write (i, j) ∈ E to denote the edge in E between the vertices ai and aj . We assume 
that G is an undirected and connected graph with no self loops or multiple edges for simplicity. 
Let us denote the set of discrete probabilities on the graph by:

P(G) = {
(ρ)Nj=1 :

∑
j

ρj = 1, ρj ≥ 0, for j ∈ V
}
,

and let Po(G) be its interior (i.e., all ρj > 0, for aj ∈ V ). Inspired by [9,12,18], we consider the 
following discrete OT problem whose minimizer is the so-called geodesic random walk.

Example 2.1. OT on G (geodesic random walk).
The OT problem on a finite graph is related to the Wasserstein distance on P(G), which can 

be defined by the discrete Benamou–Brenier formula:

W(ρ0, ρ1) := inf
v,ρ

{√√√√√ 1∫
0

〈v, v〉θ(ρ)dt : dρ

dt
+ divθ

G(ρv) = 0, ρ(0) = ρ0, ρ(1) = ρ1
}
,

where ρ0, ρ1 ∈ P(G), ρ ∈ H 1([0, 1], RN) and v is a skew matrix valued function. The inner 
product of two vector fields u, v is defined by

〈u,v〉θ(ρ) := 1

2

∑
(j,l)∈E

ujlvjlθjlwjl

with the weight θij depending on ρi and ρj . The divergence of the flux function ρv is defined as
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(divθ
G(ρv))j := −(

∑
l∈N(j)

wjlvjlθjl),

where N(i) = {aj ∈ V : (i, j) ∈ E} is the adjacency set of node ai . Then its critical point (ρ, v), 
with v = ∇GS := (Sj − Sl)(j,l)∈E for some function S on V , satisfies the following discrete 
Wasserstein-Hamiltonian flow on the graph G:

dρi

dt
+

∑
j∈N(i)

wij (Sj − Si)θij (ρ) = 0,

dSi

dt
+ 1

2

∑
j∈N(i)

wij (Si − Sj )
2 ∂θij (ρ)

∂ρi

= 0.

(6)

We may view this equation as a discrete analog of (4). Consequently, its Hamiltonian only con-
sists of the kinetic energy

H(ρ,S) = 1

4

∑
ij

(Si − Sj )
2θij (ρ)wij .

As discussed in [18], the goal of the discrete OT problem is to find an optimal transport of the 
informal minimization problem

inf
Q

{ T∫
0

1

2

∑
ij∈E

(vij )
2θijwij dt : dρt = ρtQtdt, X(0) ∼ ρ0, X(T ) ∼ ρT

}
, (7)

where T = 1 and the transition rate matrix Qt may be written as

(Qt )ii = 1

2

∑
j∈N(i)

wij

θij (ρ)

ρi

vij ,

(Qt )ji = −1

2
wji

θji(ρ)

ρj

vji ,

if θij = θji . In [18], the minimizer of the above discrete OT problem is called the geodesic 
random walk which is defined as a random walk whose marginal probability is supported on 
the set of geodesic paths on P(G), i.e., Xt is determined by the marginal distribution and the 
instantaneous transition rate matrix Qt . However, examining the transition rate matrix, we can 
find that the geodesic random walk Xt may not be well-defined, because there may not exist 
such a stochastic process due to possible negative probability and transition probability (See 
Remark 3.2 for more details).

This example illustrates that when compared to the continuous case, where the Hamiltonian 
system (5) on the phase space corresponds to the Hamiltonian PDEs (4) on Wasserstein manifold, 
such a correspondence in discrete space can’t be easily established, because the counterpart of 
(5) requires more careful treatments.
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2.2. Inhomogeneous Markov process

In order to define a stochastic process which plays the role of the Hamiltonian mechanics (5)
on a finite graph, we recall the definition of the inhomogeneous Markov process in [15]. The 
linear master equation

dρ

dt
= ρQ

determines a linear Markov process. When Q = Q(t), it corresponds to a time inhomogeneous 
Markov process. Here Q(t) is a family of infinitesimal generators of the stochastic matrix or Kol-
mogorov matrix, namely, a square matrix which has non-positive (resp. non-negative) elements 
on the main diagonal (resp. off the main diagonal), and the sum of each row is zero. Among dif-
ferent types of inhomogeneous Markov process, the nonlinear Markov processes [15] whose 
transition rate matrix Q may depend not only on the current state x of the process but also on the 
current distribution ρ of the process is of particular interest to us.

Given an initial distribution ρ0, a time inhomogeneous Markov process {Xt}t≥0 can be defined 
as a process which has ρ0 as the distribution of X0 and (s, t) → Ps,t as its transition mechanism 
in the sense that

P (X0 = ai) = ρi, P (Xt = aj |Xσ ,σ ∈ [0, s]) = (Ps,t )X(s)aj
,

where (Ps,t )aiaj
= P (Xt = aj |Xs = ai). The corresponding forward Kolmogorov equation can 

be rewritten as

dtPs,t = Ps,tQt .

If t ∈ [s, ∞) �→ ρt is continuously differentiable, then

ρ̇t = ρtQt ,

is equivalent to

ρt = ρsPs,t ,

for t ≥ s. Given (Qt)t≥0, ρ0, there exists an inhomogeneous Markov process Xt related to the 
transition rate matrix Qt and the marginal distribution ρt . On the other hand, given an inhomo-
geneous Markov process with transition matrices Ps,t , it will induce the equation of ρ with Qt

(see e.g. [15]).

3. Hamiltonian process on a finite graph

As shown in Example 2.1, although it may not be possible to find a stochastic process for 
every discrete optimal transport problem, it reveals two key features that the density of such a 
stochastic process, if exists, satisfies the generalized master equation and that its Qt -matrix is 
determined by a potential St , where St satisfies a discrete Hamiltonian Jacobi equation. Inspired 
by these properties, we introduce the definition of stochastic Hamiltonian process.
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Definition 3.1. A stochastic process {Xt}t≥0 is called a Hamiltonian process on the graph if

1. The density ρt of Xt satisfies the following generalized Master equation,

dtρt = ρtQt ,

with (Qt)ij = wjifji(vji), (Qt )ii = − 
∑

j∈N(i) wij fji(vji), where the skew-matrix v is in-
duced by a potential function S, i.e. v = ∇GS +u, with divG(ρu) = 0. And fij : R →R, is a 
real-valued measurable function which is piecewise continuous in x ∈ R and may depend on 
t and ρ.

2. The density ρ and the potential S form a Hamiltonian system on the cotangent bundle of the 
density space.

The following theorem gives the structure of the Hamiltonian on the density manifold of the 
Hamiltonian process.

Theorem 3.1. Suppose that the stochastic process {Xt}t≥0 with density {ρt }t≥0 and potential 
{St }t≥0 defined in the Definition 3.1 forms a Hamiltonian process on the graph G. In addition 
assume that the antiderivative Fij of fij exists for ij ∈ E. Then the Hamiltonian always has the
form

H(ρ,S) =
∑
i∈V

∑
j∈N(i)

ρiFji(Sj − Si, ρ, t)wji + V(ρ, t) (8)

where V is a function depending ρ and t . Moreover, the Hamiltonian system on the cotangent 
bundle of P(G) can be written as:

∂

∂t
ρi(t) =

∑
j∈N(i)

wij fij (Si − Sj ,ρ, t)ρj − wjifji(Sj − Si, ρ, t)ρi (9)

∂

∂t
Si(t) = −

∑
j∈N(i)

(
wjiFji(Sj − Si, ρ, t) + ρi

∂

∂ρi

Fji(Sj − Si, ρ, t)wji

)
− ∂

∂ρi

V(ρ, t).

Proof. According to Definition 3.1, we have ∂
∂t

ρi(t) = ∑
j∈N(i) wij fij (Si − Sj , ρ, t)ρj −

wjifji(Sj − Si, ρ, t)ρi . Since {ρt , St } forms a Hamiltonian system, we are able to state

∂

∂Si

H(ρ,S, t) =
∑

j∈N(i)

wij fij (Si − Sj ,ρ, t)ρj − wjifji(Sj − Si, ρ, t)ρi, i ∈ V.

Considering the following quantity,

H0(ρ,S, t) =
∑
i∈V

∑
j∈N(i)

ρiFji(Sj − Si, ρ, t)wji,

we can directly verify that ∂
∂S

(H(ρ, S, t) −H0(ρ, S, t)) = 0. This suggests that there exists some 
function V depending on ρ and t such that H(ρ, S, t) − H0(ρ, S, t) = V(ρ, t). This directly 
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leads to form of Hamiltonian H(ρ, S, t) = ∑
i∈V

∑
j∈N(i) ρiFji(Sj − Si, ρ, t)wji + V(ρ, t). 

Furthermore, the discrete Hamiltonian Jacobi equation is derived as

∂

∂t
St = − ∂

∂ρ
H(ρ,S, t). �

As a direct consequence, we have the following properties of Hamiltonian process.

Proposition 3.1 (Properties of Hamiltonian process). Assume that a stochastic process Xt on a 
finite graph is a Hamiltonian process. Then it holds that

1. there exists a Hamiltonian H on the density space such that its marginal distribution ρt =
X#

t ρ0 and the generator St of the transition rate matrix Qt forms a Hamiltonian system;
2. the symplectic structure on the density space is preserved, i.e.,

ωg(ρ,S)(g
′(ρ,S)ξ, g′(ρ,S)η) = ω(ρ,S)(ξ, η),

where ω denotes the symplectic form on T ∗P(G), ξ, η ∈ T(ρ,S)(T
∗P(G)) and g′(ρ, S) is the 

Jacobi matrix of the Hamiltonian flow on the density space;
3. H(t) = H(0), if the Hamiltonian H is independent of t;
4. and Xt is mass-preserving, i.e., 

∑N
i=1 ρi(t) =∑N

i=1 ρi(0).

Remark 3.1 (Particle-level properties of Hamiltonian process). Consider the Hamiltonian with 
specific form

H(ρ,S) =
∑
i∈V

∑
j∈N(i)

ρjFji(Sj − Si)wji +
∑
i∈V

ρiVi.

Suppose that {X(t)} is a Hamiltonian process on G associated to the Hamiltonian H. Then one 
can verify E[H(X(t), S(t))] with

H(X(t), S(t)) =
∑

j∈N(X(t))

FjX(t)(Sj (t) − SX(t)(t))wjX(t) + VX(t),

remains constant as time t evolves.

Based on the definition of Hamiltonian process, we are able to construct the discrete optimal 
transport problem which retains the property that the minimizer is a stochastic process on the 
graph for Example 2.1.

Proposition 3.2. There always exists a density dependent weight θ such that the geodesic random 
walk in Example 2.1 is a Hamiltonian process.

Proof. Define θU
ij = θU

S (ρi, ρj ), where θU
S (ρi, ρj ) = ρi if Sj > Si . Denote (x)+ = max(0, x), 

(x)− = min(0, x). Using the notations in Example 2.1, the geodesic random walk on G with the 
probability weight θ = θU satisfies
435
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dρi =
∑

j∈N(i)

wij (vij )
+ρj +

∑
j∈N(i)

wij (vij )
−ρi. (10)

From the discrete Hodge decomposition on the graph [9], for any skew matrix v and probabil-
ity density ρ ∈ Po(G), there exists a decomposition v = ∇GS + u with divθ

G(ρu) = 0. Here 
(∇GS)ij := (Si − Sj ) and divθ

G(ρu) := −(
∑

j∈N(i) uij θ
U
ij (ρ)). To see this fact, it suffices to 

prove that there exists a unique solution of S such that divθ
G(ρ∇GS) = divθ

G(ρv). The connec-
tivity of the graph and the fact that ρ ∈ Po(G) implies that if

〈divθ
G(ρ∇GS),S〉 = 1

2

∑
(i,j)∈E

((Si − Sj )
−)2θij (ρ) = 0,

then 0 must be a simple eigenvalue of divθ
G(ρ∇G) with eigenvector (1, · · · , 1). Thus S is unique 

up to a constant shift and the skew matrix vt = ∇GSt + u satisfies

d(St )i = −1

2

∑
j∈N(i)

wij ((Si − Sj )
−)2 + C(t), divθ

G(ρu) = 0,

where C(t) is independent of nodes. Meanwhile, fij can be selected to achieve fij (Si − Sj ) =
(Si − Sj )

+ and thus

(Qt )ii =
∑

j∈N(i)

wij (Si − Sj )
− =

∑
j∈N(i)

wijfji(Sj − Si),

(Qt )ji = wji(Sj − Si)
+ = wjifji(Sj − Si), ij ∈ E, otherwise Qji = 0.

We can define a time inhomogeneous Markov process as follows by the transition matrix 
P (Xt = vj |Xτ , τ ∈ [0, s]) = (Ps,t )X(s)vj

. Given the past σ({Xτ : τ ∈ [0, t]}) of X up to time 
t ≥ 0, the probability of its having moved away from Xt at the time t + h with h small enough 
can be approximated by 1 − (Qt )XtXt h, i.e.,∣∣∣P (X(t + h) = Xt |Xτ , τ ≤ t) − 1 − (Qt )XtXt h

∣∣∣= o(h).

Here {−(Qt)ii}i is often called as the transition rate of Xt . Given the history that the jump 
appeared σ({Xτ : τ ∈ [0, t]} ∪ {Xt+h �= Xt }), the probability that Xt+h = aj is approximately 
(Pt,t+h)Xtaj

, which implies that∣∣∣P (X(t + h) = aj |Xτ , τ ≤ t) − h(Qt)Xtaj

∣∣∣= o(h). �
Remark 3.2. It is worth mentioning that the Hamiltonian system on P(G) does not necessarily 
induce a stochastic process on G. This can also be illustrated by using the optimal transport 
problem introduced in Example 2.1. Let us take wij = 1 if ij ∈ E for simplicity. In order to 
define a Hamiltonian process on G, the probability weight θ can not be chosen arbitrarily here. 
For example, if we take the probability weight θij = θA(ρi, ρj ) = 1

2 (ρi + ρj ) in [9], the density 
equation can be rewritten as
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dtρt = ρtQt ,

where

(Qt )ii = 1

2

∑
j∈N(i)

(Si − Sj ),

(Qt )ij = 1

2
(Sj − Si), ij ∈ E, otherwise Qij = 0.

The function fij (x) = 1
2x.

When θij = θL(ρi, ρj ) = ρi−ρj

log(ρi )−log(ρj )
in [7], the density equation can be rewritten as

dtρt = ρtQt ,

where

(Qt )ii =
∑

j∈N(i)

(Si − Sj )

log(ρi) − log(ρj )
,

(Qt )ij = − (Si − Sj )

log(ρi) − log(ρj )
, ij ∈ E, otherwise Qij = 0.

The function fij (x) = x
log(ρi )−log(ρj )

.
In both cases, there is no guarantee that the off-diagonal of Qt is non-positive. Hence, Qt

is unable to admit a stochastic process Xt which is time inhomogeneous Markov due to the 
appearance of negative transition probabilities. For valid choices of θ that may admit stochastic 
processes, we refer to [7], [19] and references therein.

Remark 3.3. If θij > 0 for all ij ∈ E, then the Hodge decomposition yields a unique potential S
up to a constant which induces v. If there exists ij ∈ E such that θij = 0, then the generator S may 
be not unique. Meanwhile, the Hamiltonian Jacobi equation may become one-side inequality,

vij = Si − Sj , ∂tSi + ∂

∂ρi

H(ρ,S) ≤ 0.

Remark 3.4. The initial value problem of the Hamiltonian system of ρ, S may develop singular-
ity at a finite time T > 0, i.e., either limt→T Si(t) = ∞ or limt→T ρi ≤ 0.

We would like to emphasize that a Hamiltonian process is not Markov in general. The suffi-
cient and necessary conditions when a Hamiltonian process gives a Markov process are presented 
as follows.

Theorem 3.2. Given a Hamiltonian process {Xt}t≥0 on the graph with a Hamiltonian H(ρ, S) =∑N
i=1

∑
j∈N(i) Fij (ρ, S)wijρi . If Xt is a Markov process, then (ρ, S) in Definition (3.1) satisfies 

the following system,
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∂2Fij

∂Si∂ρi

( ∑
l∈N(i)

∂Fil

∂Si

ρiwil +
∑

l∈N(i)

∂Fli

∂Si

ρlwli

)
(11)

+ ∂2Fij

∂Si∂ρj

( ∑
k∈N(j)

∂Fjk

∂Sj

ρjwjk +
∑

k∈N(j)

∂Fkj

∂Sj

ρlwkj

)

− ∂2Fij

∂Si∂Si

( ∑
l∈N(i)

∂Fil

∂ρi

ρiwil +
∑

l∈N(i)

∂Fli

∂ρi

ρlwli +
∑

l∈N(i)

(Filwil + Fliwli)
)

− ∂2Fij

∂Si∂Sj

( ∑
k∈N(j)

∂Fjk

∂ρj

ρjwjk +
∑

k∈N(j)

∂Fkj

∂ρj

ρkwkj +
∑

k∈N(j)

(Fjkwjk + Fkiwki)
)

= 0

for i, j ∈ V . Conversely, if (ρ, S) satisfies (11), then there exists a Markov process which is 
Hamiltonian.

Proof. Since Xt is a Hamiltonian process, the transition matrix is determined by ρtQt = ∂H
∂S

=
dtρt . This implies that

(ρtQt )i =
∑

j∈N(i)

∂Fij (ρ,S)

∂Si

wijρi +
∑

j∈N(i)

∂Fji(ρ, S)

∂Si

wjiρj .

Therefore, (Qt )ii = ∑
j∈N(i)

∂Fij (ρ,S)

∂Si
wij , (Qt )ij = ∂Fij (ρ,S)

∂Sj
wij . Since Xt preserves the mass, 

it holds that 
∑

j∈N(i)(
∂Fij (ρ,S)

∂Si
+ ∂Fij (ρ,S)

∂Sj
)wij = 0 for every i ≤ N .

Notice that Xt is Markov implies that dtQij = 0, for i, j ≤ N , that is

dt

∂Fij

∂Si

= 0, dt

∂Fji

∂Sj

= 0.

Direct calculation leads to

dt

∂Fij

∂Si

= ∂2Fij

∂Si∂ρi

dtρi + ∂2Fij

∂Si∂ρj

dtρj

+ ∂2Fij

∂Si∂Si

dtSi + ∂2Fij

∂Si∂Sj

dtSj

= ∂2Fij

∂Si∂ρi

( ∑
l∈N(i)

∂Fil

∂Si

ρiwil +
∑

l∈N(i)

∂Fli

∂Si

ρlwli

)

+ ∂2Fij

∂Si∂ρj

( ∑
k∈N(j)

∂Fjk

∂Sj

ρjwjk +
∑

k∈N(j)

∂Fkj

∂Sj

ρlwkj

)

− ∂2Fij

∂Si∂Si

( ∑ ∂Fil

∂ρi

ρiwil +
∑ ∂Fli

∂ρi

ρlwli +
∑

(Filwil + Fliwli)
)

l∈N(i) l∈N(i) l∈N(i)
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− ∂2Fij

∂Si∂Sj

( ∑
k∈N(j)

∂Fjk

∂ρj

ρjwjk +
∑

k∈N(j)

∂Fkj

∂ρj

ρkwkj +
∑

k∈N(j)

(Fjkwjk + Fkiwki)
)
,

which yields the desired result. Conversely, if (ρ, S) satisfies (11), the previous arguments lead to
the equation of ρ becomes a linear Master equation. Then there always exists a Markov process 
which is a stochastic representation of linear Master equation. Meanwhile, it can be verified that 
this Markov process satisfies all the conditions in Definition 3.1 and is Hamiltonian. �
Corollary 3.1. Given a Hamiltonian H(ρ, S) = ∑N

i=1
∑

j∈N(i) Fij (ρ, S)wijρi . Assume that 
there exists (ρ∗, S∗(t)) satisfies the following conditions,

1.
∑

j∈N(i)

∂Fij (ρ,S)

∂Si
+ ∂Fij (ρ,S)

∂Sj
= 0,

2. ρ∗ is independent of t and (ρ∗, S∗(t)) solves

∑
l∈N(i)

∂Fil

∂Si

ρiwil +
∑

l∈N(i)

∂Fli

∂Si

ρlwli = 0,

∂2Fij

∂Si∂Si

( ∑
l∈N(i)

∂Fil

∂ρi

ρiwil +
∑

l∈N(i)

∂Fli

∂ρi

ρlwli +
∑

l∈N(i)

(Filwil + Fliwli)
)

+ ∂2Fij

∂Si∂Sj

( ∑
k∈N(j)

∂Fjk

∂ρj

ρjwjk +
∑

k∈N(j)

∂Fkj

∂ρj

ρkwkj +
∑

k∈N(j)

(Fjkwjk + Fkiwki)
)

= 0

Then there exists a Hamiltonian process which is Markov and preserves the mass. Furthermore, 
the Hamiltonian process is invariant with respect to ρ∗.

4. Hamiltonian process via discrete SBP on graphs

Although the SBP [26] has a history close to 100 years, it has received revived attention from 
control theory and machine learning communities recently, see [17,24]. For convenience, the 
background of continuous SBP is presented in the appendix.

For the discrete counterpart of SBP on graph, there are two different treatments reported in 
the literature.

(A) One is to consider a reference path measure R (induced by a reversible random walk) on the 
graph and then study the optimization problem involving the relative entropy between the 
reference measure R and the path measure P with given initial and terminal distributions 
[17,18].) In this framework, the reference random walk is often related to a discrete version 
of (33) (For example, the linear discretization of the Laplacian gives the time homogeneous
Markov chain as the reference in [5]).

(B) Another way is proposed by the discrete version of (30) or (32) directly [8].

We shall show that different treatments create differences on the structure and formulation of 
equations, in particular the discrete Laplacian operator. Each of these formulations can determine 
its corresponding Hamiltonian process on graph.
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4.1. Discrete SBP based on relative entropy and reference Markov measure

In the following discussion, we always assume that wij = 1 if ij ∈ E for conciseness of 
formulations. By using the discrete Girsanov theorem on graph, the discrete SBP in the form of 
relative entropy (A) becomes the following control problem

min
m̂t≥0

⎧⎨⎩
1∫

0

∑
i∈V

ρ(i, t)
∑

j∈N(i)

(
m̂t

ij

mt
ij

log

(
m̂t

ij

mt
ij

)
− m̂t

ij

mt
ij

+ 1

)
mt

ij dt

⎫⎬⎭ (12)

subject to:
d

dt
ρ(i, t) =

∑
j∈N(i)

m̂t
j iρj − m̂t

ij ρi ρ(·,0) = ρ0, ρ(·,1) = ρ1,

where the reference measure R is determined by the master equation dt ρ̃t = ∑
j∈N(i) m

t
ji ρ̃j −

mt
ij ρ̃i .

Remark 4.1. The formula for relative entropy between path measure P and reference path mea-
sure R is formulated as

H(P |R) =
1∫

0

∑
i∈V

ρ(i, t)
∑

j∈N(i)

(
m̂t

ij

mt
ij

log

(
m̂t

ij

mt
ij

)
− m̂t

ij

mt
ij

+ 1

)
mt

ij dt.

This result is provided in [17], [18]. A rigorous proof for this formula originates from Theorem 
2.9 of [16].

Let us denote u(x) = x logx − x + 1. By introducing Lagrange multiplier ψ , we obtain the 
following Lagrangian functional

L(ρ, m̂,ψ) =
1∫

0

∑
i∈V

ρ(i, t)
∑

j∈N(i)

u

(
m̂t

ij

mt
ij

)
mt

ij dt

+
1∫

0

∑
i∈V

−ρ(i, t)
∂

∂t
ψ(i, t) − ψ(i, t)

⎛⎝ ∑
j∈N(i)

m̂t
j iρj − m̂t

ij ρi

⎞⎠ dt

=
1∫

0

−
∑
i∈V

ρ(i, t)
∂

∂t
ψ(i, t) − 1

2

∑
(i,j)∈E

[
m̂ji

mji

(ψ(i, t) − ψ(j, t)) − u(
m̂ji

mji

)

]
mjiρ(j, t)

+
[
m̂ij

mij

(ψ(j, t) − ψ(i, t)) − u(
m̂ij

mij

)

]
mijρ(i, t) dt.

When solving the above saddle point problem, we minimize over m̂ and get
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1∫
0

−
∑
i∈V

ρ(i, t)
∂

∂t
ψ(i, t) − 1

2

∑
(i,j)∈E

[u∗(ψ(i, t) − ψ(j, t))mjiρ(j, t)

+ u∗(ψ(j, t) − ψ(i, t))mijρ(i, t)] dt.

Here u∗ is the Legendre dual of u: u∗(x) = supy {x · y − u(y)}, leading to u∗(x) = ex − 1. By 
formulating the Lagrangian, we can identify the Hamiltonian of this control problem, which can 
be written as:

H(ρ,ψ) =
∑
i∈V

∑
j∈N(i)

(exp(ψ(j, t) − ψ(i, t)) − 1)mijρ(i, t). (13)

Then the above control problem implies the following Hamiltonian system

∂tρ = ∂H(ρ,ψ)

∂ψ
, ∂tψ = −∂H(ρ,ψ)

∂ρ
,

that is,

∂

∂t
ρ(i, t) =

∑
j∈N(i)

−eψ(j,t)−ψ(i,t)mijρ(i, t) + eψ(i,t)−ψ(j,t)mjiρ(j, t), (14)

∂

∂t
ψ(i, t) = −

∑
j∈N(i)

(eψ(j,t)−ψ(i,t) − 1)mij .

By using the Hopf-Cole transform, we can further verify that the discrete SBP problem de-
termines a Hamiltonian process on the graph. Let us consider the following transform τ :
T ∗P(G) → T ∗P(G) as:

τ [(ρ,ψ)] = (ρ,ψ − 1

2
lnρ) (15)

Let us denote g′(ρ, ψ) = Dτ(ρ, ψ). Then the symplectic form ω is unchanged in the sense that

ωg(ρ,ψ)(g
′(ρ,ψ)ξ, g′(ρ,ψ)η) = ω(ρ,ψ)(ξ, η),

where (ξ, η) ∈ T(ρ,ψ)T
∗P(G). By using the symplectic submersion from P(G) to RN , the sym-

plectic form can be represented by (g′(ρ, ψ)ξ)T Jg′(ρ, ψ)η = ξT Jη, where J is the standard 
symplectic matrix. Since dtτ (ρ, ψ)T = τ ′dt (ρ, ψ)T and that (τ ′)T J τ ′ = J , we conclude that 
the Hopf–Cole transformation (15) is a symplectic transformation on the cotangent bundle of 
the density manifold. Denote (ρ, S) as the new coordinate. Then {ρt , St } satisfies the following 
Hamiltonian system:

∂ρ(i, t)

∂t
= ∂H̃(ρ,S)

∂S

∂S(i, t)

∂t
= −∂H̃(ρ,S)

∂ρ
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with

H̃(ρ,S) = H(τ−1(ρ,S)) =
∑
i∈V

∑
j∈N(i)

e(Sj −Si)mij
√

ρiρj , (16)

that is

∂S(i, t)

∂t
= −mii − 1

2

∑
j∈N(i)

eSj −Si mij

√
ρj√
ρi

− 1

2

∑
j∈N(i)

eSi−Sj mji

√
ρj√
ρi

, (17)

∂ρ(i, t)

∂t
=

∑
j∈N(i)

eSi−Sj mji
√

ρj
√

ρi −
∑

j∈N(i)

eSj −Si mij
√

ρi
√

ρj .

As a consequence, we verify that, as reported in [17], the discrete SBP corresponds to 
a Hamiltonian process with the transition rate matrix Q (Qij = m̂ij ) defined by Qii =
− 
∑

j∈N(i) e
Sj −Si

√
ρj√
ρi

mij , Qij = eSi−Sj

√
ρi√
ρj

mji if ij ∈ E.

Using the above procedures, we can naturally extend the original SBP problem to the follow-
ing generalized control problem

min
m̂t≥0

⎧⎨⎩
1∫

0

∑
i∈V

ρ(i, t)
∑

j∈N(i)

u

(
m̂t

ij

mt
ij

)
mt

ij dt

⎫⎬⎭ (18)

subject to:
d

dt
ρ(i, t) =

∑
j∈N(i)

m̂t
j iρj − m̂t

ij ρi ρ(·,0) = ρ0, ρ(·,1) = ρ1.

Here u is an arbitrary convex function. Then the Hamiltonian associated with this general 
control problem is

H(ρ,ψ) =
∑
i∈V

∑
j∈N(i)

u∗(ψ(j, t) − ψ(i, t))mijρ(i, t), (19)

where λij = (u′)−1(ψj − ψi).
For the sake of completeness of our discussion, we also reveal the relations among the 

so-called Schrödinger system [10,11,3] and our derived systems (14) and (17). All three PDE sys-
tems are derived from the SBP. We introduce the Madelung Transform φ : T ∗P(G) → T ∗P(G)

(f,g) = φ(ρ,S) = (
√

ρe−S,
√

ρeS), (20)

or equivalently,

(f, g) = φ̃(ρ,ψ) = (ρe−ψ, eψ). (21)

Combining (20) with (17), or combining (21) with (14) yields the Schrödinger system:
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∂

∂t
f (i, t) =

∑
j∈N(i)

(f (j, t) − f (i, t))mt
ij , (22)

∂

∂t
g(i, t) = −

∑
j∈N(i)

(g(j, t) − g(i, t))mt
ij .

Similar to our previous analysis, we can verify that both transforms φ and φ̃ preserves the sym-
plectic form. And we know that (22) is a Hamiltonian system and its corresponding Hamiltonian 
is

Ĥ(f, g) =
∑
i∈V

∑
j∈N(i)

figjm
t
ij .

By applying the Theorem 3.2, we obtain the following result about the conditions under which 
the Hamiltonian process in SBP enjoys the stationary measure and Markov property.

Proposition 4.1. Assume that the reference process is mass-preserving, i.e., 
∑

i ρ̃(i, t) =∑
i ρ̃

0(i), and possesses a stationary measure ρ∗. Then there exists a stationary point (ρ∗, S∗)
of the Hamiltonian system (17) on the density manifold.

Proof. Take ∂H̃
∂S

= 0 and ∂H̃
∂ρ

= 0 such that (ρ, S) is independent of time. The equation of ρ
leads to ∑

j∈N(i)

eSi−Sj mji
√

ρj =
∑

j∈N(i)

eSj −Si mij
√

ρj .

Due to mii = − 
∑

j∈N(i) mij , the equation of S becomes

1

2

∑
j∈N(i)

(eSi−Sj mji + eSj −Si mij )
√

ρj =
∑

j∈N(i)

mij
√

ρi.

Applying the above relationships, we obtain that∑
j∈N(i)

eSi−Sj mji
√

ρj =
∑

j∈N(i)

mij
√

ρi.

This immediately implies that∑
j∈N(i)

e−Sj mji
√

ρj =
∑

j∈N(i)

e−Si mij
√

ρi.

Now by taking eS∗
j

√
ρ∗

j = eS∗
i

√
ρ∗

i for all ij ∈ E, the first equation is reduced to

∑
j∈N(i)

mjiρ
∗
j =

∑
j∈N(i)

mijρ
∗
i .
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This leads to ∑
j∈N(i)

mjiρ
∗
j + miiρ

∗
i = 0,

which is the sufficient and necessary condition that the reference process admits the stationary 
measure ρ∗. From the above arguments, there always exists a stationary point (ρ∗, S∗) which 
refers to the reference process itself and ρ0 = ρ1 = ρ∗ in the SBP. �

In the following, we show that if the solution process of the SBP is Markov, then its density 
function ρ must be invariant with respect to time.

Corollary 4.1. Assume there exists a Markov process solving the SBP and that the reference 

process is mass-preserving, then for all ij ∈ E, cij = eSi
√

ρi

e
Sj √

ρj

is the solution of

−
∑

k∈N(i)

ckimik +
∑

l∈N(j)

cljmjl − mjj + mii = 0. (23)

Moreover, ρ is the invariant measure of the solution process in SBP.

Proof. Since the solution process of the SBP is time homogeneous Markov, we can verify that 
eSi

√
ρi

e
Sj √

ρj

= cij > 0 is independent of time and that

dtρ = ρQ,

where Qii = − 
∑

j∈N(i) cjimij , Qij = cjimij . Let eψi = eSi
√

ρi . Then it holds that

∂

∂t
ρ(i, t) =

∑
j∈N(i)

−eψ(j,t)−ψ(i,t)mijρ(i, t) + eψ(i,t)−ψ(j,t)mjiρ(j, t)

∂

∂t
ψ(i, t) = −

∑
j∈N(i)

(eψ(j,t)−ψ(i,t) − 1)mij .

As a consequence, for ij ∈ E,

dtcij = dt [(eψi−ψj )] (24)

= cij (−
∑

l∈N(i)

eψl−ψi mil +
∑

k∈N(j)

eψk−ψj mjk) + cij (−mjj + mii)

= cij (−
∑

l∈N(i)

climil +
∑

k∈N(j)

ckjmjk − mjj + mii) = 0.

Since cij > 0 for ij ∈ E, we obtain (23). Next we show that the density function ρ is invariant 
with respect to time.
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Notice that eSi−Sj =
√

ρj√
ρi

cij leads to

d(Si − Sj ) = 1

2

dρj

ρj

− 1

2

dρi

ρi

+ d ln(cij ) = 1

2

dρj

ρj

− 1

2

dρi

ρi

.

This implies that

− mii − 1

2

∑
k∈N(i)

eSk−Si mik

√
ρk√
ρi

− 1

2

∑
k∈N(i)

eSi−Skmki

√
ρk√
ρi

+ mjj + 1

2

∑
l∈N(j)

eSl−Sj mjl

√
ρl√
ρj

+ 1

2

∑
l∈N(j)

eSj −Slmlj

√
ρl√
ρj

= − 1

2ρi

(
∑

k∈N(i)

eSi−Skmki
√

ρiρk −
∑

k∈N(i)

eSk−Si mik
√

ρiρk)

+ 1

2ρj

(
∑

l∈N(j)

eSj −Slmlj
√

ρjρl −
∑

l∈N(j)

eSl−Sj mjl
√

ρjρl),

which is equivalent to (23). Using (24), it yields that∑
k∈N(i)

cikmkiρ(k, t) − ckimikρ(i, t) = 1

ρj

( ∑
l∈N(j)

cjlmljρ(l, t) − cljmjlρ(j, t)
)
,

that is,

dtρi = dt ln(ρj ).

Similarly, we have dtρj = dt ln(ρi), which implies that

dtρi = ρiρjdtρi .

Now we claim that ρ must be invariant with respect to t . Indeed, if there exists ij ∈ E such that 
dρi �= 0, then we have that ρiρj = 1. However, this contradicts the mass conservation 

∑N
i=1 ρi =

1. It follows that dtρi = 0, and therefore ρ should be invariant with respect to time. We conclude 
that ρ must be the invariant measure of the solution process in the SBP. �
4.2. Discrete SBP based on minimum action with Fisher information

Another way (B) to describe the discrete SBP (see e.g. [8]) lies on the discretization of the 
variational problem (32). Consider the following control problem by directly discretizing the 
Fisher information I (ρ) in (32):

J1 = min
ρ,v

{ 1∫
0

(
1

2
〈v, v〉ρ + 1

8
I (ρ))dt + 1

8

∑
i

(ρ1(i) log(ρ1(i)) − ρ0 log(ρ0(i)))
}
, (25)

where ρi ∈ H 1((0,1)), vij ∈ L2((0,1); θij (ρ)) and
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dtρt = ρtQt = −divθ
G(ρtvt )

with ρ0, ρ1 ∈ Po(G). In this case, we look for a stochastic process which obeys the above mas-
ter equation and minimize the action with the Fisher information I (ρ) := 1

2

∑
ij∈E(log(ρi) −

log(ρj ))
2θ̃ij (ρ). Here ̃θ is another density dependent weight which may be different from earlier 

defined θ on the graph G.
By using Lagrangian multiplier method, the critical point of the discrete variational approach 

should satisfy

vij (t) = (Si(t) − Sj (t)),

dtρi −
∑

j∈N(i)

(Si − Sj )θij (ρ) = 0, (26)

dtSi + 1

2

∑
j∈N(i)

(Si − Sj )
2 ∂θij

∂ρi

= 1

8

∂

∂ρi

I (ρ).

It forms a Hamiltonian system on the density space with the Hamiltonian 1
4

∑
i,j (Si −

Sj )
2θij (ρ) − 1

8I (ρ). In other words, the critical point gives a Hamiltonian process on the graph.
We can also reformulate the above system (26) in the form of Schrödinger system (33). By 

taking differential on f = √
ρeS and g = √

ρe−S , we get

dtf = e( 1
2 log(ρ)+S)(

1

2

dtρ

ρ
+ dtS)

= e( 1
2 log(ρ)+S)

(1

2

∑
j∈N(i) wij (Si − Sj )θij (ρ)

ρ
− 1

2

∑
j∈N(i)

wij (Si − Sj )
2 ∂θij

∂ρi

+ 1

8

∂

∂ρi

I (ρ)
)
,

dtg = e( 1
2 log(ρ)−S)(

1

2

dtρ

ρ
− dtS)

= e( 1
2 log(ρ)−S)

(1

2

∑
j∈N(i) wij (Si − Sj )θij (ρ)

ρ
+ 1

2

∑
j∈N(i)

wij (Si − Sj )
2 ∂θij

∂ρi

− 1

8

∂

∂ρi

I (ρ)
)
.

Rewriting the above systems into compact form leads to

dtf = −1

2
�Gf, (27)

dtg = 1

2
�Gg,

where �G is the nonlinear discretization of the Laplacian operator,

(�Gf )j

= −fj

(
1

fjgj

∑ (
w̃jl(log(fj /gj ) − log(fl/gl))θ̃ij (fg)
l∈N(j)
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+ wjl(log(fjgj ) − log(flgl))θij (fg)
)

+
∑

l∈N(j)

(
w̃jl | log(fj /gj ) − log(fl/gl)|2 ∂θ̃ij (fg)

∂fjgj

+ wjl | log(fjgj )

− log(flgl)|2 ∂θij (fg)

∂fjgj

))
.

Remark 4.2. In approach (A), the Hamiltonian systems ((14), (17) and (22)) are corresponding 
to the control problem (12), which is derived from discretizing the relative entropy H(P |R) in 
(29); In approach (B), the Hamiltonian systems ((26) and (27)) are corresponding to the control 
problem (25), which is derived via discretizing the Fisher information I (ρ) in (30). It worth 
mentioning that under continuous cases, (29) and (30) are equivalent under the transform (31)
and their corresponding Hamiltonian systems are also equivalent. However, this is not true for 
discrete cases. Discretizing the SBP at different stages leads to different Hamiltonian systems.

Remark 4.3 (Nonlinear Markov process as reference process in approach (B)). Let us recall that 
in continuous space Rd , f, g solve the Schrödinger system

∂

∂t
ft = Lt ft ,

∂

∂t
gt = −Lt gt . with f0, g1 are given,

with Lt corresponds to the generator of the reference process R (cf. Equation (32) of [17]).
By comparing the systems (22) and (27) related to f, g, it is observed that Lt in approach 

(A) can be viewed as a linear approximation of Laplacian operator, which is associated to the 
Markov reference process R with transition rate matrix {mt

ij }; On the other hand, Lt = �G in 
approach (B) is a nonlinear approximation of Laplacian operator. We can thus interpret �G as a 
nonlinear generator depending on both the state and the distribution. According to the definition 
of nonlinear Markov process mentioned in section 2.2, we can associate approach (B) with a 
nonlinear Markov reference process R generated by �G even though such reference process is 
not needed in the original control formulation (25).

4.3. Periodic marginal distribution of Hamiltonian process in SBP

The periodic solution, as one classical topic of Hamiltonian systems, has been studied for 
many decades (see e.g. [6,25,21]). For our considered Hamiltonian process, the periodicity of 
the solution appears in the density evolution. Below, we present several examples of periodic 
reference process, and prove that if the periodic Hamiltonian process exists, it coincides with the 
reference process in SBP.

By using the Floquet theorem in [27], the fundamental matrix X(t) satisfies X(t + T ) =
X(t) exp(LT ), where exp(LT ) is a non-singular constant matrix. The Floquet exponents of 
dtρ = ρQt are the eigenvalues μi, i ≤ k ≤ N of the matrix L. If there exists some i such that 
exp(μiT ) = 1 or −1, then there exists periodic density function with period T or 2T . As a 
consequence, we obtain the following results.

Lemma 4.1. Assume that {Qt }t≥0 is transition rate matrix and Qt is T-periodic. If there exists a 
Floquet exponent μ = kπ i , k ∈ Z, then dtρ = ρQt has a periodic density.
T
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Example 4.1. Consider a 2-nodes graph G. Given a reference measure which possesses the 
marginal distribution as follows,

dtρ1 = ρ1m11 + ρ2m21,

dtρ2 = ρ1m12 + ρ2m22,

where m21=−m11, m22=−m12, m11=− 1
2 − 1

4 cos(t)+ 1
8 sin(t)− 1

16 sin(t) cos(t)

( 1
2 + 1

4 cos(t))2 and m22=− 1
1
2 + 1

4 cos(t)
.

There exists a nontrivial periodic solution ρ1(t) = 1
2 + 1

4 cos(t), ρ2(t) = 1 − ρ1(t). And the 
periods of ρ1 and ρ2 are both T = 2π . Therefore, there exists a time inhomogeneous Markov 
process Xt with periodic marginal distribution ρt on G with the transition rate matrix Qt =
(mij )i,j≤2.

We can also show the existence of time inhomogeneous Markov process with periodic 
marginal distribution on any fully-connected graph.

Proposition 4.2. Suppose G is a fully connected graph, and {ρt} is a periodic density trajectory 
(with period T ) in Po(G), then we can always find a transition rate matrix Q(t) such that ρt is 
the solution to the master equation ρ̇t = ρtQ(t).

Proof. Assume G contains n vertices. Let us assume the non-diagonal entries of Q(t) to be 
{mij }, we rearrange these entries to form a n(n − 1) dimensional vector as:

m = (m12, ...,m1n,m21,m23, ...,m2n, ...,mn1, ...,mnn−1)
T .

Plugging m into the Master’s equation, we derive the linear equation for m:

P(t) m = (
ρ̇1 ρ̇2 . . . ρ̇n

)T
. (28)

Where P is an n × n(n − 1) matrix defined as

P(t) = (
P1(t) P2(t) . . . Pn(t)

)
.

Pm(t) =
⎛⎝ ρm(t)Im 0m×(n−m−1)

−ρm(t)eT
m −ρm(t)eT

n−m−1
0(n−m−1)×m ρm(t)In−m−1

⎞⎠
n×(n−1)

for 1 ≤ m ≤ n

Here we denote eT
m = (1, ...,1)︸ ︷︷ ︸

m 1s

. We can verify that

m0 =
(

1

(n − 1)ρ1
eT
n−1,

1

(n − 1)ρ2
eT
n−1, ...,

1

(n − 1)ρn

eT
n−1

)
belongs to the kernel of P(t), and that P(t) is a full rank matrix. There must exist a solution m∗
to (28), where its entries are expressions of {ρi, ρ̇i}i∈V . In other words, we can directly give such 
a solution. To be more specific, let’s consider the transport process on the loop from vertex 1 to 
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2, 2 to 3,... n-1 to n and n to 1. This corresponds to setting mij to 0 except m12, m23, ..., mn−1 n, 
and mn1. Now the equation (28) becomes:⎛⎜⎜⎜⎜⎜⎜⎝

−ρ1 ρn

−ρ2
. . .

. . .

−ρn

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
m12
m23
...

mn−1 n

mn1

⎞⎟⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎜⎝
ρ̇1
ρ̇2
...

ρ̇n−1
ρ̇n

⎞⎟⎟⎟⎟⎟⎠
Therefore the solution is (− ρ̇1−ρ̇n

ρ1
, − ρ̇2

ρ2
, · · · , − ρ̇n−1

ρn−1
, − ρ̇n

ρn
)T .

Then we can directly take m(t) = Km0(t) + m∗(t), since {ρt } is in the interior of P(G), we 
can always find a large enough K > 0 that guarantees the entries of m(t) to be always non 
negative. And m(t) forms the transition rate matrix Q(t) whose master equation admits the 
periodic solution {ρt }. �
Example 4.2. Consider the periodic marginal distribution ρt :

ρt = (
cos t

2
√

6
+ sin t

6
√

2
+ 1

3
,−cos t

2
√

6
+ sin t

6
√

2
+ 1

3
,− sin t

3
√

2
+ 1

3
),

which is a circle centered at ( 1
3 , 13 , 13 ) with radius 1

2
√

3
on P(G). Following the idea of Proposi-

tion 4.2, one may take

m11(t) = −6
√

2 + √
3 sin t − 3 cos t√

3 cos t + 4 sin t + 2
√

2
, m12 = −m11, m13 = 0,

m22(t) = − 24 − 4
√

2 cos t

−√
6 cos t + √

2 sin t + 4
, m21 = −1

2
m22, m23 = −1

2
m22,

m33(t) = − 3
√

2√
2 − sin t

m13 = 0,m23 = −m33,

such that dt = ρtQt with Qt = (mij )i,j≤3.

Next we aim to use general SBP (18) to produce a Hamiltonian process with periodic marginal 
distribution on G. In particular, when the convex function u = x log(x) − x − 1, by using the 
Nelson’s transformation ψi = √

ρie
Si , the Hamiltonian system can be also rewritten as

dSi = −mii − 1

2

∑
j∈N(i)

eSj −Si mij (t)

√
ρj√
ρi

− 1

2

∑
j∈N(i)

eSi−Sj mji(t)

√
ρj√
ρi

,

dρi =
∑

j∈N(i)

eSi−Sj mji(t)
√

ρj
√

ρi −
∑

j∈N(i)

eSj −Si mij (t)
√

ρi
√

ρj ,

with the Hamiltonian H̃(ρ, S, t) = ∑
i∈V

∑
j∈N(i) e

(Sj −Si)mij (t)
√

ρiρj . Taking ψ as a time-

independent potential and choosing ρ0, ρ1 as the initial and terminal distribution from the 
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periodic solution, then the distribution of the solution process is exactly same as the reference 
process. Thus it induces a Hamiltonian system which is periodic in time. Therefore there ex-
ists SBP with the given ρ0, ρ1 such that the solution process is Hamiltonian and its marginal 
distribution is periodic in time.

In the following, we assume that the Legendre transformation u∗ of u in (18) is continuous 
differentiable and satisfies

u∗(x) ≥ 0, if x ≤ 0, u∗(x) ≤ 0, if x ≥ 0,

∂u∗

∂x
(0) = 1, lim

x→−∞

∣∣∣∂u∗

∂x
(x)

∣∣∣< ∞, lim
x→+∞

∂u∗

∂x
(x) = +∞.

Now we are able to give the characterization of the periodic Hamiltonian process on finite graph 
via general SBP.

Theorem 4.1. Assume that the reference process is periodic with the marginal distribution and its 
period T > 0. There always exists ρ0, ρ1 such that the critical point of the general SBP problem 
(18) is a Hamiltonian process and its marginal distribution is periodic in time.

Proof. Notice that the critical point of SBP satisfies

∂

∂t
ρ(i, t) =

∑
j∈N(i)

−∂u∗

∂x
(ψj − ψi)mijρ(i, t) + ∂u∗

∂x
(ψi − ψj)mjiρ(j, t),

∂

∂t
ψ(i, t) = −

∑
j∈N(i)

u∗(ψj − ψi)mij ,

where ρ(0) = ρ0, ρ(1) = ρ1. Choosing ρ0, ρ1 as two different distributions at different time of 
the reference process, and taking ψi = ψj , we get

∂

∂t
ρ(i, t) =

∑
j∈N(i)

−mijρ(i, t) + mjiρ(j, t),

∂

∂t
ψ(i, t) = 0.

This implies that the critical point forms a Hamiltonian system with Hamiltonian H(ρ, ψ, t) =∑
i,j mij (t)ρi . Due to the fact that the marginal distribution of reference process is periodic in 

time, the critical point is exactly equal to the reference process and its marginal distribution is 
periodic. �

One may wonder whether there exists certain Hamiltonian process whose marginal distribu-
tion is periodic but is not the reference process. We first use a 2-nodes graph example to point 
out it is not possible to get such Hamiltonian by using SBP when u(x) = x log(x) − x − 1. Even 
worse, we show that for general finite graph, the periodic Hamiltonian process exists if and only 
if it equals to a reference process in general SBP.
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Example 4.3. Given G consisting of 2 nodes. Assume the reference process with transition rate 
matrix m is periodic with period T > 0 and {t ∈ [0, T ]|mij (t) = 0, ij ∈ E} has Lebesgue measure 
zero. Notice that ρ, S of the Hamiltonian process X(t) satisfies

∂

∂t
ρ(1, t) = −eψ(2,t)−ψ(1,t)m12ρ(1, t) + eψ(1,t)−ψ(2,t)m21ρ(2, t),

∂

∂t
(ψ(1, t) − ψ(2, t)) = −(eψ(2,t)−ψ(1,t) − 1)m12 + (eψ(1,t)−ψ(2,t) − 1)m21.

Since m12, m21 ≥ 0, then ψ(1) −ψ(2) equals to constant if and only if ψ(1) = ψ(2). Meanwhile, 
if ψ1 −ψ2 > 0, then ψ1 −ψ2 is increasing to +∞, and ψ1 −ψ2 is decreasing to −∞ if ψ1 < ψ2. 
Then we claim that ρ1 is not periodic in time. If we assume that ρ1 is periodic with period T1, then 
it holds true 

∫ (k+1)T1
kT1

−eψ(2,t)−ψ(1,t)m12ρ(1, t) +eψ(1,t)−ψ(2,t)m21ρ(2, t)dt = 0. Without losing 

generality, let us assume that ψ1 − ψ2 > 0. It is not hard to see that eψ(1,t)−ψ(2,t) is increasing 
to +∞ and eψ(1,t)−ψ(2,t) is decreasing to 0 as t → ∞. The boundedness of ρ(1, t), ρ(2, t) yield 
that there exists large enough k such that

(k+1)T1∫
kT1

−eψ(2,t)−ψ(1,t)m12ρ(1, t) + eψ(1,t)−ψ(2,t)m21ρ(2, t)dt > 0,

which leads to a contradiction. Therefore, ρ(t) is periodic in time if and only if ψ1 = ψ2. This 
implies that X(t) is exactly the reference process.

Theorem 4.2. Assume the reference process with transition rate matrix m is periodic with period 
T > 0 and {t ∈ [0, T ]|mij (t) = 0, ij ∈ E} has Lebesgue measure zero. Then the Hamiltonian 
process which has periodic density distribution in general SBP problem (18) is equal to the 
reference process which has the periodic density distribution.

Proof. Assume that there is a maximum ψi∗ ≥ ψi , i �= i∗ and ψi∗ > ψimin
. Then according to 

the evolution of ψ ,

∂

∂t
ψ(i, t) = −

∑
j∈N(i)

u∗(ψ(j, t) − ψ(i, t))mij ,

then the maximum principle holds, i.e., ψi∗(t) ≥ ψi(t) ≥ ψimin
(t). Notice that

d

dt
ρ(i, t) =

∑
j∈N(i)

−∂u∗

∂x
(ψj − ψi)mijρ(i, t) + ∂u∗

∂x
(ψi − ψj)mjiρ(j, t).

The periodicity of ρi implies that there exists T1 > 0 for any k ∈ N+ such that

(k+1)T1∫
kT1

∑
j∈N(i)

−∂u∗

∂x
(ψj − ψi)mijρ(i, t) + ∂u∗

∂x
(ψi − ψj )e

ψ(i,t)−ψ(j,t)mjiρ(j, t)dt = 0.
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Due to the maximum principle, if there exists one node l with a local maximum of ψl connected 
with another node k with a local minimum of ψk , it will lead to ψl −ψk → +∞ as t → ∞. This 
contradicts with the periodicity of ρk and ρl . If any node l with a local maximum of ψl is not 
connected with another node k with a local minimum of ψk , we pick a road l, j1, · · · , jw, k which 
connects l and k. Notice that ψl → +∞, ψk → −∞, ψjm ∈ (ψk, ψl), m ≤ w. Then there must 
exists jm such that m is the smallest number which satisfies ψk −ψjm → −∞. Now consider the 
periodicity of ρjm . There exists k′ large enough such that

(k′+1)T1∫
k′T1

∑
j∈N(jm)

−∂u∗

∂x
(ψj − ψjm)mjmjρ(jm, t) + ∂u∗

∂x
(ψjm − ψj )mjjmρ(j, t)dt > 0.

This leads to a contradiction, we complete the proof.

5. More examples and future work

In this section, we conclude the paper by presenting a few more examples of Hamiltonian 
processes on graph and more questions to be considered in the future.

Example 5.1. (Euler-Lagrangian equations [14]) Assume that the Lagrangian in density man-
ifold is given by L(ρt , ρ̇t ) = 1

2gW (ρ̇t , ρ̇t ) − F(ρt ). Here gW (σ1, σ2) := −σ1(�ρ)+σ2 where 
σk ∈ TρPo(G), k = 1, 2 and (�ρ)+ is the pseudo inverse of the weight graph Laplacian matrix 
�ρ(·) := divθ

G(ρ∇G(·)). Then the critical point of

inf
ρt

T∫
0

L(ρt , ∂tρt )dt

with given ρ0 and ρT satisfies the Euler-Lagrangian equation

∂t

δ

δ∂tρt

L(ρt , ∂tρt ) = δ

δρt

L(ρt , ∂tρt ) + C(t).

By introducing the Legendre transform St = (−�ρt )
+∂tρt , it can be rewritten as a Hamiltonian 

system. That is

∂tρt + divθ
G(ρ∇GS) = 0,

∂tSt + 1

4

∑
j∈N(i)

(Si − Sj )
2(∂ρi

θ(ρi, ρj ) + ∂ρi
θ(ρj , ρi)) + δ

δρt

F(ρt ) = C(t),

with the Hamiltonian H(ρ, S) = 1
4

∑
ij (Si −Sj )

2θijwij +F(ρt ). Therefore, if the transition rate 
matrix in generalized master equation is well-defined, the Euler-Lagrangian equation in density 
space determines a Hamiltonian process on G.
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Example 5.2. (Madelung system [10]) The energy is given by

H(ρ,S) = 1

4

∑
ij∈E

(Si − Sj )
2θijwij +F(ρt ) + βI (ρt ), β > 0.

Here F(ρ) = ∑
i ρiVi + ∑

i,j ρiρjWij , and I (ρ) = 1
2

∑
ij∈E(log(ρi) − log(ρj ))

2θ̃ij . Here θ̃ij

is another density dependent weight on the graph that can be the same or different from θij . The 
Madelung system is

∂tρt + divθ
G(ρ∇GS) = 0,

∂tSt + 1

4

∑
j∈N(i)

(Si − Sj )
2(∂ρi

θ(ρi, ρj ) + ∂ρi
θ(ρj , ρi)) + δ

δρt

F(ρt ) + β
δ

δρt

I (ρt ) = C(t).

When taking θ = θU , the Madelung system in density space determines a Hamiltonian process 
on G. This system has a close relationship with the discrete Schrödinger equation [9].

Example 5.3. (Lp-Wasserstein distance) The Lp Wasserstein distance, p ∈ (1, ∞), is related to 
the following minimization problem,

W
p
p (ρ0, ρ1) = inf

v
{

1∫
0

N∑
i=1

∑
j∈N(i)

1

2
θij (ρ)v

p
ij dt : ∂tρ + divθ

G(ρv) = 0, ρ(0) = ρ0, ρ(1) = ρ1}.

We refer to [13] for a continuous version of Lp-Wasserstein distance. Its critical point is related 
to the Hamiltonian system in density space

∂tρt + divθ
G(ρt |∇GS|q−2∇GS) = 0,

∂t (Si) + 1

2q

∑
j∈N(i)

|(∇GS)ij |q(∂1θij + ∂2θji) = 0,

with the Hamiltonian

H(ρ,S) = 1

2q

∑
i,j

|∇GS|qθij ,
1

q
+ 1

p
= 1,p ∈ (1,∞).

When the equation of ρ is determined by a transition rate matrix, this leads to a Hamiltonian 
process.

To end the discussion, we want to mention two problems that are worth to be studied further.

• As shown in [10], the classical Hamiltonian ODEs induce the Wasserstein–Hamiltonian 
flows on the density manifold. There are many special properties for Hamiltonian system 
in continuous space, such as conservation of energy, preservation of the volume etc. The 
particle-level counterpart on graph is the Hamiltonian process introduced in Definition 3.1. 
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In addition to the conservation property discussed in Remark 3.1, are there other quantities 
or structures being preserved by the Hamiltonian process on the graph G?

• As discussed in [22], stochastic differential equations can be well approximated by con-
tinuous time random walk on the lattices. Then it is natural to ask whether the proposed 
Hamiltonian process on a lattice can be used to approximate a Hamiltonian system in Rd or 
not. If so, how well is the approximation?
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Appendix A

A.1. The background of SBP

Denote � = C([0, 1], Rd). Given R ∈ M+(�) the law of the reversible Brownian motion 
(here we consider the Brownian motion with the volume Lebesgue measure, denoted by Leb, 
as the initial distribution). Consider the relative entropy of any probability measure with respect 
to R,

H(P |R) =
∫
�

log(
dP

dR
)dP.

The SBP can be formulated as

minH(P |R),P ∈P(�) : P0 = μ0,P1 = μ1. (29)

Here P0 := P(X0 ∈ ·), P1 := P(X1 ∈ ·) and Xt(ω) := ω(t) is the canonical process with 
ω ∈ �. It is proven (see e.g. [17]) that if H(μ̃0|Leb) < ∞ and H(μ̃1|Leb) < ∞, the SBP has a 
unique solution P̂ which enjoys the following decomposition

P̂ = f0(X0)g1(X1)R ∈P(�),

where f0, g1 are nonnegative measurable functions such that

ER[f0(X0)g1(X1)] = 1.

Introduce the function ft , gt defined by

ft (z) := ER[f0(X0)|Xt = z],
gt (z) := ER[g1(X1)|Xt = z], Pt -a.e., z ∈ Rd,

and the constraint
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μ̃0 = f0g0Leb, μ̃1 = f1g1Leb.

Then the SBP (2) with h̄ = 1 is equivalent to the following minimal action problem, i.e.,

inf{H(P |R) : P0 = μ̃0,P1 = μ̃1} − H(μ0|Leb) (30)

= inf
{ 1∫

0

∫
Rd

|vt |2
2

μt(dx)dt : (∂t − �

2
)μ + ∇ · (vμ) = 0,

P0 = μ0,P1 = μ1

}
We denote ρt the density of μt with respect to the Lebesgue measure. In addition, with the 
assumption that μ0, μ1 have finite second moments, the critical point of the minimal action 
problem satisfies the following system

(∂t − �

2
)ρ + ∇ · (∇φρ) = 0, ρ(0) = ρ0,

(∂t + �

2
)φ + 1

2
|∇φ|2 = 0, φ(1) = log(g1)

with vt = ∇φt . There is also a backward version of this PDE system, namely

(−∂t − �

2
)ρ + ∇ · (∇ψρ) = 0, ρ(1) = ρ1,

(−∂t + �

2
)ψ + 1

2
|∇ψ |2 = 0, ψ(0) = log(f0).

Here we have the relation ∇ψt + ∇φt = ∇ log(ρt ).
Applying the transformation

St = φt − 1

2
log(ρt ) (31)

as being done in [23], we arrive at the Hamiltonian system on the density space,

∂

∂t
ρ + ∇ · (ρ(t, x)∇S) = 0,

∂

∂t
S + 1

2
|∇S|2 − 1

8

δ

δρt

I (ρt ) = 0.

The corresponding Hamiltonian is H(ρ, S) = 1
2

∫
Rd |∇S|2ρdx − 1

8I (ρ) where I (ρ) =∫
Rd |∇ log(ρ)|2ρdx is the Fisher information. Meanwhile, the action minimizing problem (30)

can be rewritten as
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inf
vt

{ 1∫
0

E[1

2
v(t,X(t))2] + 1

8
I (ρ(t))dt + 1

2

∫
(ρ1 log(ρ1) − ρ0 log(ρ0))dx (32)

| dXt = v(t,Xt )dt, X(0) ∼ ρ0, X(1) ∼ ρ1
}
.

Here ρ(t) is the density of the marginal distribution of Xt .
Next, by introducing the conjugate Madelung transformation f = √

ρeS, g = √
ρe−S (also 

known as “Hopf-Cole” transformation), f and g satisfy so-called “Schrödinger system” (see e.g. 
[10,11,3]),

(∂t − �

2
)g = 0, g(0) = g0, (33)

(∂t + �

2
)f = 0, f (1) = f1.

This also implies the following relationships

φ = log(f ) = S + 1

2
log(ρ),ψ = log(g) = −S + 1

2
log(ρ).

References

[1] V.I. Arnold, Mathematical Methods of Classical Mechanics, second edition, Graduate Texts in Mathematics, vol. 60, 
Springer-Verlag, New York, 1989, translated from the Russian by K. Vogtmann and A. Weinstein.

[2] J. Benamou, Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, 
Numer. Math. 84 (3) (2000) 375–393.

[3] A. Blaquiére, Controllability of a Fokker-Planck equation, the Schrödinger system, and a related stochastic optimal 
control, Dyn. Control 2 (1992) 235–253.

[4] E.A. Carlen, Conservative diffusions, Commun. Math. Phys. 94 (3) (1984) 293–315.
[5] Y. Chen, T. Georgiou, M. Pavon, A. Tannenbaum, Robust transport over networks, IEEE Trans. Autom. Control 

62 (9) (2017) 4675–4682.
[6] T.M. Cherry, On periodic solutions of Hamiltonian systems of differential equations, Philos. Trans. R. Soc. Lond., 

Ser. A, Contain. Pap. Math. Phys. Character 227 (1928) 137–221.
[7] S. Chow, W. Huang, Y. Li, H. Zhou, Fokker-Planck equations for a free energy functional or Markov process on a 

graph, Arch. Ration. Mech. Anal. 203 (3) (2012) 969–1008.
[8] S. Chow, W. Li, C. Mou, H. Zhou, A discrete Schrodinger bridge problem via optimal transport on graphs, J. Dyn. 

Differ. Equ. 20 (33) (2020) 34.
[9] S. Chow, W. Li, H. Zhou, A discrete Schrödinger equation via optimal transport on graphs, J. Funct. Anal. 276 (8) 

(2019) 2440–2469.
[10] S. Chow, W. Li, H. Zhou, Wasserstein Hamiltonian flows, J. Differ. Equ. 268 (3) (2020) 1205–1219.
[11] G. Conforti, M. Pavon, Extremal flows in Wasserstein space, J. Math. Phys. 59 (6) (2018) 063502.
[12] J. Cui, L. Dieci, H. Zhou, Time discretizations of Wasserstein-Hamiltonian flows, arXiv :2006 .09187, 2020.
[13] J. Dolbeault, B. Nazaret, G. Savaré, A new class of transport distances between measures, Calc. Var. Partial Differ. 

Equ. 34 (2) (2009) 193–231.
[14] W. Gangbo, W. Li, C. Mou, Geodesics of minimal length in the set of probability measures on graphs, ESAIM 

Control Optim. Calc. Var. 25 (2019) 78.
[15] V.N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations, Cambridge Tracts in Mathematics, vol. 182, 

Cambridge University Press, Cambridge, 2010.
[16] C. Léonard, Girsanov theory under a finite entropy condition, in: Séminaire de Probabilités XLIV, in: Lecture Notes 

in Math., vol. 2046, Springer, Heidelberg, 2012, pp. 429–465.
[17] C. Léonard, A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete 

Contin. Dyn. Syst. 34 (4) (2014) 1533–1574.
456

http://refhub.elsevier.com/S0022-0396(21)00620-3/bibC715D07A3614F3CD4C4D1DECDCD69F8As1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bibC715D07A3614F3CD4C4D1DECDCD69F8As1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bibB8F3B11758871564796A1E4DEFF4C4B2s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bibB8F3B11758871564796A1E4DEFF4C4B2s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bibA6AF3B42243359FD8D41E4F43588199Es1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bibA6AF3B42243359FD8D41E4F43588199Es1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib41354F7256E31BEE5C1242B9C05D879Es1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib6D99470C463CF48FA04DCCCCBD7A7C70s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib6D99470C463CF48FA04DCCCCBD7A7C70s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib990B353CDBBF1DDB36CDCDA4482299F6s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib990B353CDBBF1DDB36CDCDA4482299F6s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib8A745D1630CE1330983932DBA35798EEs1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib8A745D1630CE1330983932DBA35798EEs1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bibB701CFF45E9084D8CC9CD857367C1C98s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bibB701CFF45E9084D8CC9CD857367C1C98s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib11CE78791C1B4BB79ADAAA6B932B435Bs1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib11CE78791C1B4BB79ADAAA6B932B435Bs1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib05FC0E971F36E4B3E9DA38DD41EEADF5s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib8B876FDF597BAB1507CB41A8E2423A9Cs1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib4B8A786B5585713C0207FF68DA734F97s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bibE38F6D408288E0D271E9D41C4515653Bs1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bibE38F6D408288E0D271E9D41C4515653Bs1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib3D85B252E906CA53B392B443933E4034s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib3D85B252E906CA53B392B443933E4034s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib75FD95B6D122DBD39D7D7CC3296E3EDDs1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib75FD95B6D122DBD39D7D7CC3296E3EDDs1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib33D5AE9272EF5F946247F3A2F6DDF53As1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib33D5AE9272EF5F946247F3A2F6DDF53As1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bibDCCF4C297F7D24780A2D2440A247470Bs1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bibDCCF4C297F7D24780A2D2440A247470Bs1


J. Cui, S. Liu and H. Zhou Journal of Differential Equations 305 (2021) 428–457
[18] C. Léonard, Lazy random walks and optimal transport on graphs, Ann. Probab. 44 (3) (2016) 1864–1915.
[19] J. Maas, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal. 261 (8) (2011) 2250–2292.
[20] E. Madelung, Quanten theorie in hydrodynamischer form, Z. Phys. 40 (3–4) (1927) 322–326.
[21] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, vol. 74, 

Springer-Verlag, New York, 1989.
[22] B.-R. Nawaf, V.-E. Eric, Continuous-time random walks for the numerical solution of stochastic differential equa-

tions, Mem. Am. Math. Soc. 256 (1228) (2018), v+124.
[23] E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics, Phys. Rev. 150 (4) (1966) 

1079–1085.
[24] M. Pavon, Quantum Schrödinger bridges, in: Directions in Mathematical Systems Theory and Optimization, in: 

Lect. Notes Control Inf. Sci., vol. 286, Springer, Berlin, 2003, pp. 227–238.
[25] P.H. Rabinowitz, Periodic solutions of Hamiltonian systems, Commun. Pure Appl. Math. 31 (2) (1978) 157–184.
[26] E. Schrödinger, Über die Umkehrung der Naturgesetze, Sitz.ber Preuss. Akad. Wiss. Phys.-Math. Kl. Akad. Wiss. 

(1931).
[27] G. Teschl, Ordinary Differential Equations and Dynamical Systems, Graduate Studies in Mathematics, vol. 140, 

American Mathematical Society, Providence, RI, 2012.
[28] A.J. van der Schaft, Port-Hamiltonian systems: an introductory survey, in: International Congress of Mathemati-

cians. Vol. III, Eur. Math. Soc., Zürich, 2006, pp. 1339–1365.
[29] A.J. van der Schaft, B.M. Maschke, Port-Hamiltonian systems on graphs, SIAM J. Control Optim. 51 (2) (2013) 

906–937.
[30] C. Villani, Optimal Transport: Old and New, Grundlehren der Mathematischen Wissenschaften (Fundamental Prin-

ciples of Mathematical Sciences), vol. 338, Springer-Verlag, Berlin, 2009.
457

http://refhub.elsevier.com/S0022-0396(21)00620-3/bibDCA580388B781EED9FC618642F95E98Es1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib687FC9C24BDA46B664EC9EEEC92AA31Fs1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib38C28CDEF293C28CFBFC1DA2A35BE62Fs1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib7DF7B8B93FBBB57BE2C0389270C113CCs1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib7DF7B8B93FBBB57BE2C0389270C113CCs1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bibD64DA63C6F9306B9D135307FDE7218F4s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bibD64DA63C6F9306B9D135307FDE7218F4s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib8F6DD4786DC71347F7C42B4657AC88BFs1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib8F6DD4786DC71347F7C42B4657AC88BFs1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib80662EB8592B1B1DB0321A670452E7B7s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib80662EB8592B1B1DB0321A670452E7B7s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib43F911C587A12534E37D6EB741727ED9s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib9ADE5CA31F3FA057DC4A95B39BDD7187s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib9ADE5CA31F3FA057DC4A95B39BDD7187s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib4E2FAB2D8A0FBF3A01EEB82B4E09FFB3s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib4E2FAB2D8A0FBF3A01EEB82B4E09FFB3s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib3E92C76DC91E746708FA1D02F790ABF7s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib3E92C76DC91E746708FA1D02F790ABF7s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib9D4C27B7AE298FB84EAB561BEB453D51s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib9D4C27B7AE298FB84EAB561BEB453D51s1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib8E308544777DDFEC501C355DBD78279As1
http://refhub.elsevier.com/S0022-0396(21)00620-3/bib8E308544777DDFEC501C355DBD78279As1

	What is a stochastic Hamiltonian process on finite graph? An optimal transport answer
	1 Introduction
	2 Preliminary
	2.1 A motivation example
	2.2 Inhomogeneous Markov process

	3 Hamiltonian process on a finite graph
	4 Hamiltonian process via discrete SBP on graphs
	4.1 Discrete SBP based on relative entropy and reference Markov measure
	4.2 Discrete SBP based on minimum action with Fisher information
	4.3 Periodic marginal distribution of Hamiltonian process in SBP

	5 More examples and future work
	Acknowledgments
	References


